OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 4 — Apr. 1, 2006
  • pp: 611–620

Modeling the growth of a polymer microtip on an optical fiber end

Malik Hocine, Nicolas Fressengeas, Godefroy Kugel, Christiane Carré, Daniel Joseph Lougnot, Renaud Bachelot, and Pascal Royer  »View Author Affiliations

JOSA B, Vol. 23, Issue 4, pp. 611-620 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (698 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Manufacturing end-of-fiber optical components able to realize optical functions ranging from a simple lens to more complex functions such as mode-selective components is a decisive but a priori complex task owing to the fiber-core dimensions. Effective low-cost methods allowing researchers to grow polymer components by free-radical photopolymerization using the light coming out of the fiber have recently been reported. A novel, to our knowledge, phenomenological model of the underlying photopolymerization process is here given and used to simulate the polymer-component growth in a three-dimensional time-resolved manner. The simulation results are thus used to understand and optimize the component growth conditions, focusing particularly on the role of oxygen either present in the atmosphere or dissolved in the solution.

© 2006 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(160.5470) Materials : Polymers
(250.5460) Optoelectronics : Polymer waveguides

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 14, 2005
Revised Manuscript: August 8, 2005
Manuscript Accepted: October 6, 2005

Malik Hocine, Nicolas Fressengeas, Godefroy Kugel, Christiane Carré, Daniel Joseph Lougnot, Renaud Bachelot, and Pascal Royer, "Modeling the growth of a polymer microtip on an optical fiber end," J. Opt. Soc. Am. B 23, 611-620 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Kato, "Light coupling from a stripe-geometry GaAs diode laser into an optical fiber with spherical end," J. Appl. Phys. 44, 2756-2758 (1973). [CrossRef]
  2. H. M. Presby, A. F. Benner, and C. A. Edwards, "Laser micromachining of efficient fiber microlenses," Appl. Opt. 29, 2692-2695 (1990). [CrossRef] [PubMed]
  3. G. Eisenstein and D. Vitello, "Chemically etched conical microlenses for coupling single-mode lasers into single-mode fibers," Appl. Opt. 21, 3470-3474 (1982). [CrossRef] [PubMed]
  4. L. G. Cohen and M. V. Schneider, "Microlenses for coupling junction lasers to optical fibers," Appl. Opt. 13, 89-94 (1974). [CrossRef] [PubMed]
  5. P. D. Bear, "Microlenses for coupling single-mode fibers to single-mode thin-film waveguides," Appl. Opt. 19, 2906-2909 (1980). [CrossRef] [PubMed]
  6. K. S. Lee and F. S. Barnes, "Microlenses on the end of single-mode optical fibers for laser applications," Appl. Opt. 24, 3134-3139 (1985). [CrossRef] [PubMed]
  7. N.S.Allen, ed., Photopolymerisation and Photoimaging Science and Technology (Elsevier Applied Science, 1989). [CrossRef]
  8. R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D. Lougnot, "Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization," Appl. Opt. 40, 5860-5871 (2001). [CrossRef]
  9. M. Hocine, R. Bachelot, C. Ecoffet, N. Fressengeas, P. Royer, and G. Kugel, "End-of-fiber polymer tip: manufacturing and modeling," Synth. Met. 127, 313-318 (2002). [CrossRef]
  10. R. Bachelot, A. Fares, D. Barchiesi, G. Lerondel, and P. Royer, "Coupling semiconductor lasers into single-mode optical fibers by use of tips grown by photopolymerization," Opt. Lett. 17, 1971-1973 (2004). [CrossRef]
  11. J. Tyrrell, "Tiny polymer tips boost fibre coupling efficiency," Opt. Laser Europe, November 2004, pp. 29-31.
  12. T. M. Monro, C. M. de Sterke, and L. Poladian, "Analysis of self-written waveguide experiments," J. Opt. Soc. Am. B 16, 1680-1685 (1999). [CrossRef]
  13. T. M. Monro, C. M. D. Sterke, and L. Poladian, "Topical review: catching light in its own trap," J. Mod. Opt. 48, 191-238 (2001).
  14. K. Dorkenoo, O. Cregut, L. Mager, F. Gillot, C. Carre, and A. Fort, "Quasi-solitonic behavior of self-written waveguides created by photopolymerization," Opt. Lett. 27, 1782-1784 (2002). [CrossRef]
  15. A. Barthelemy, S. Maneuf, and C. Froehly, "Propagation soliton et autoconfinement de faisceau laser," Opt. Commun. 55, 201-206 (1985). [CrossRef]
  16. M. Segev, B. Crosignani, and A. Yariv, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992). [CrossRef] [PubMed]
  17. N. Fressengeas, J. Maufoy, and G. Kugel, "Temporal behavior of bidimensional photorefractive bright spatial solitons," Phys. Rev. E 54, 6866-6875 (1996). [CrossRef]
  18. M. D. Feit and J. A. Fleck, "Light propagation in graded-index optical fibers," Appl. Opt. 17, 3990-3998 (1978). [CrossRef] [PubMed]
  19. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1989).
  20. J. M. Jarem and P. P. Banerjee, Computational Methods for Electromagnetic and Optical Systems (Marcel Dekker, 2000).
  21. C. Ecoffet, A. Espanet, and D. J. Lougnot, "Photopolymerization by evanescent waves: a new method to obtain nanoparts," Adv. Mater. (Weinheim, Ger.) 10, 411-414 (1998). [CrossRef]
  22. A. Espanet, C. Ecoffet, and D. J. Lougnot, "Photopolymerisation by evanescent waves II: revealing dramatic inhibiting effects of oxygen at submicrometer scale," J. Polym. Sci., Part A: Polym. Chem. 37, 2075-2085 (1999). [CrossRef]
  23. A. Espanet, G. D. Santos, C. Ecoffet, and D. J. Lougnot, "Photopolymerization by evanescent waves: characterization of photopolymerizable formulation for photolithography with nanometric resolution," Appl. Surf. Sci. 138-139, 87-92 (1999). [CrossRef]
  24. C. Decker and A. Jenkins, "Kinetic approach of O2 inhibition in ultraviolet and laser-induced polymerizations," Macromolecules 18, 1241-1244 (1985). [CrossRef]
  25. L. B. Jeunhomme, Single-Mode Fiber Optics: Principles and Applications (Marcel Dekker, 1990).
  26. K. Dorkenoo, A. J. V. Wonderen, H. Bulou, M. Romeo, O. Cregut, and A. Fort, "Time-resolved measurement of the refractive index for photopolymerization processes," Appl. Phys. Lett. 83, 2474-2476 (2003). [CrossRef]
  27. S. R. Logan, "Spatial inhomogeneity effects in photochemical kinetics," J. Chem. Educ. 67, 872-875 (1990). [CrossRef]
  28. C. H. Wang and J. L. Xia, "Holographic method for investigating the diffusion of dye molecules in the polymer host," J. Chem. Phys. 92, 2603-2613 (1990). [CrossRef]
  29. H. Hervet, W. Urbach, and F. Rondelez, "Mass diffusion measurements in liquid crystals by a novel optical method," J. Chem. Phys. 68, 2725-2729 (1978). [CrossRef]
  30. R. C. Reid, J. M. Prausnitz, and T. K. Sternood, The Properties of Gases and Liquids (McGraw-Hill, 1977).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited