OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 4 — Apr. 1, 2006
  • pp: 727–740

Laser-locked, high-repetition-rate cavity ringdown spectrometer

R. Z. Martínez, Markus Metsälä, Olavi Vaittinen, Tommi Lantta, and Lauri Halonen  »View Author Affiliations

JOSA B, Vol. 23, Issue 4, pp. 727-740 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (497 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the design, construction, and initial performance evaluation of a high-repetition-rate cavity ringdown spectrometer. The spectrometer is based on the use of the Pound–Drever–Hall technique to lock the laser frequency to the maximum of a transmission fringe of the interferometer used as a sample cell. This results in continuous injection of light into the interferometer. The injection is repetitively interrupted with an acousto-optical modulator to generate ringdowns (exponential decays) at a typical rate of 10 kHz . Averaging of these large numbers of fitted ringdown times allows us to attain a minimum detectable absorption of 1.43 × 10 11 cm 1 Hz 1 2 short term and 9.0 × 10 11 cm 1 Hz 1 2 long term. In addition, the spectrometer has a continuous tuning capability of 1 cm 1 , which allows the use of standard linearization and frequency calibration techniques for the spectrum. To illustrate the operation and sensitivity of the spectrometer, part of the Q-branch of a weak acetylene overtone has been recorded.

© 2006 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6390) Spectroscopy : Spectroscopy, molecular

ToC Category:

Original Manuscript: September 1, 2005
Manuscript Accepted: October 17, 2005

R. Z. Martínez, Markus Metsälä, Olavi Vaittinen, Tommi Lantta, and Lauri Halonen, "Laser-locked, high-repetition-rate cavity ringdown spectrometer," J. Opt. Soc. Am. B 23, 727-740 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. O'Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources," Rev. Sci. Instrum. 59, 2544-2551 (1988). [CrossRef]
  2. A. O'Keefe, "Trace gas analysis by pulsed laser absorption spectroscopy," Am. Lab. (Shelton, Conn.) 21, 19-22 (1989).
  3. A. O'Keefe, J. J. Scherer, A. L. Cooksy, R. Sheeks, J. Heath, and R. J. Saykally, "Cavity ring down dye laser spectroscopy of jet-cooled metal clusters: Cu2 and Cu3," Chem. Phys. Lett. 172, 215-218 (1990). [CrossRef]
  4. M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, "Cavity ring-down spectroscopy," J. Chem. Soc., Faraday Trans. 94, 337-351 (1998). [CrossRef]
  5. G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: Experimental schemes and applications," Int. Rev. Phys. Chem. 19, 565-607 (2000). [CrossRef]
  6. D. Romanini and K. K. Lehmann, "Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven and eight stretching quanta," J. Chem. Phys. 99, 6287-6301 (1993). [CrossRef]
  7. D. Romanini and K. K. Lehmann, "Cavity ring-down overtone spectroscopy of HCN, HC13N and HC15N," J. Chem. Phys. 102, 633-642 (1995). [CrossRef]
  8. P. Zalicki and R. N. Zare, "Cavity ring-down spectroscopy for quantitative absorption measurements," J. Chem. Phys. 102, 2708-2717 (1995). [CrossRef]
  9. R. T. Jongma, M. G. H. Boogaarts, I. Holleman, and G. Meijer, "Trace gas detection with cavity ring down spectroscopy," Rev. Sci. Instrum. 66, 2821-2828 (1995). [CrossRef]
  10. J. T. Hodges, J. P. Looney, and R. D. van Zee, "Laser bandwidth effects in quantitative cavity ring-down spectroscopy," Appl. Opt. 35, 4112-4116 (1996). [CrossRef] [PubMed]
  11. J. T. Hodges, J. P. Looney, and R. D. van Zee, "Response of a ring-down cavity to an arbitrary excitation," J. Chem. Phys. 105, 10278-10288 (1996). [CrossRef]
  12. J. Martin, B. A. Paldus, P. Zalicki, E. H. Wahl, T. G. Owano, J. S. Harris Jr., C. H. Kruger, and R. N. Zare, "Cavity ring-down spectroscopy with Fourier-transform-limited laser pulses," Chem. Phys. Lett. 258, 63-70 (1996). [CrossRef]
  13. K. K. Lehmann and D. Romanini, "The superposition principle and cavity ring-down spectroscopy," J. Chem. Phys. 105, 10263-10277 (1996). [CrossRef]
  14. K. K. Lehmann, "Ring-down cavity spectroscopy cell using continuous wave excitation for trace species detection," U.S. Patent 5,528,040, June 18, 1996.
  15. D. Romanini, J. Gambogi, and K. K. Lehmann, "Cavity ring down spectroscopy with cw diode laser excitation," presented at the 50th Ohio State University Symposium on Molecular Spectroscopy, Columbus, Ohio, June 12-16, 1995.
  16. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, "CW cavity ring down spectroscopy," Chem. Phys. Lett. 264, 316-322 (1997). [CrossRef]
  17. D. Romanini, A. A. Kachanov, and F. Stoeckel, "Diode laser cavity ring down spectroscopy," Chem. Phys. Lett. 270, 538-545 (1997). [CrossRef]
  18. D. Romanini, A. A. Kachanov, and F. Stoeckel, "Cavity ringdown spectroscopy: broad band absolute absorption measurements," Chem. Phys. Lett. 270, 546-550 (1997). [CrossRef]
  19. Li Ziyuan, R. G. T. Bennett, and G. E. Stedman, "Swept-frequency induced optical cavity ringing," Opt. Commun. 86, 51-56 (1991). [CrossRef]
  20. K. An, C. Yang, R. R. Dasari, and M. S. Feld, "Cavity ring-down technique and its application to the measurement of ultraslow velocities," Opt. Lett. 20, 1068-1070 (1995). [CrossRef] [PubMed]
  21. J. Poirson, F. Bretenaker, M. Vallet, and A. Le Floch, "Analytical and experimental study of ringing effects in a Fabry-Perot cavity. Application to the measurement of high finesses," J. Opt. Soc. Am. B 14, 2811-2817 (1997). [CrossRef]
  22. M. J. Lawrence, B. Willke, M. E. Husman, E. K. Gustafson, and R. L. Byer, "Dynamic response of a Fabry-Perot interferometer," J. Opt. Soc. Am. B 16, 523-532 (1999). [CrossRef]
  23. J. Ye and J. L. Hall, "Cavity ringdown heterodyne spectroscopy: High sensitivity with microwatt light power," Phys. Rev. A 61, 061802 (2000). [CrossRef]
  24. B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, "Cavity-locked ring-down spectroscopy," J. Appl. Phys. 83, 3991-3997 (1998). [CrossRef]
  25. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B: Photophys. Laser Chem. 31, 97-105 (1983). [CrossRef]
  26. T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilke, and R. L. Byer, "A laser-locked cavity ring-down spectrometer employing an analog detection scheme," Rev. Sci. Instrum. 71, 347-353 (2000). [CrossRef]
  27. R. W. Fox, C. W. Oates, and L. W. Hollberg, "Stabilizing diode lasers to high-finesse cavities," in Cavity-Enhanced Spectroscopies, R.D.Van Zee and J.P.Looney, eds. (Academic, 2002).
  28. N. J. van Leeuwen, J. C. Diettrich, and A. C. Wilson, "Periodically locked continuous-wave cavity ringdown spectroscopy," Appl. Opt. 42, 3670-3677 (2003). [CrossRef] [PubMed]
  29. Typically, with mirror reflectivities of 99.95% and higher.
  30. J. A. Barnes, T. E. Gough, and M. Stoer, "Laser power build-up cavity for high-resolution laser spectroscopy," Rev. Sci. Instrum. 70, 3515-3518 (1999). [CrossRef]
  31. T. Day, E. K. Gustafson, and R. L. Byer, "Sub-hertz relative frequency stabilization of two diode-laser-pumped Nd:YAG lasers locked to a Fabry-Perot interferometer," IEEE J. Quantum Electron. 28, 1106-1117 (1992). [CrossRef]
  32. Nominally, the sensitivity of CRDS experiments is independent of the light intensity used, but this is true only as long as the intensity is large enough to stay away from the noise floor of the detectors. When detector noise is no longer negligible, the sensitivity is also reduced.
  33. R. J. Cvetanovic, D. L. Singleton, and G. Paraskevopoulos, "Evaluations of the mean values and standard errors of rate constants and their temperature coefficients," J. Phys. Chem. 83, 50-60 (1979). [CrossRef]
  34. J. Ye, Joint Institute for Laboratory Astrophysics (Space), National Institute of Standards and Technology, and University of Colorado, Boulder, Colorado 80309-0440 (personal communication, 2005).
  35. M. Metsälä, S. Yang, O. Vaittinen, D. Permogorov, and L. Halonen, "High-resolution cavity ring-down study of acetylene between 12 260 and 12380 cm−1," Chem. Phys. Lett. 346, 373-378 (2001). [CrossRef]
  36. We will confine our discussion to what we regard as "standard" cavity ringdown setups, which rely on the measurement of the decay time of the cavity. This explicitly excludes the group of what nowadays are called "cavity-enhanced" techniques, which are also based on the use of external interferometers but typically do not rely on the measurement of decay times. While technically complex, some of these techniques have demonstrated exceptional sensitivities.
  37. J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, "Trace moisture detection using continuous-wave cavity ring-down spectroscopy," Anal. Chem. 75, 4599-4605 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited