OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 4 — Apr. 1, 2006
  • pp: 760–770

Design principles of q-preserving multipass-cavity femtosecond lasers

Andrew M. Kowalevicz, Alphan Sennaroglu, Aurea Tucay Zare, and James G. Fujimoto  »View Author Affiliations


JOSA B, Vol. 23, Issue 4, pp. 760-770 (2006)
http://dx.doi.org/10.1364/JOSAB.23.000760


View Full Text Article

Enhanced HTML    Acrobat PDF (806 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a new class of femtosecond laser cavity designs that are based on a Herriott-type multipass cavity (MPC) to effectively increase the length of a standard laser resonator. MPC laser designs can be used to increase the output pulse energies or to make more compact resonator configurations. A general theory for MPC lasers is developed by analyzing a periodic optical system, and the conditions are established for the case in which the q parameter of a Gaussian beam is left invariant after a single transit through the system. On the basis of this analysis, we determine the design criteria for two-mirror q-preserving MPCs. Practical laser cavity choices are presented and their trade-offs are examined. We also discuss various experimental setups that use these novel MPC designs to increase pulse energies while maintaining compact cavities.

© 2006 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(320.0320) Ultrafast optics : Ultrafast optics
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Ultrafast Optics

History
Original Manuscript: August 26, 2005
Manuscript Accepted: October 6, 2005

Citation
Andrew M. Kowalevicz, Alphan Sennaroglu, Aurea Tucay Zare, and James G. Fujimoto, "Design principles of q-preserving multipass-cavity femtosecond lasers," J. Opt. Soc. Am. B 23, 760-770 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-4-760


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. E. Spence, P. N. Kean, and W. Sibbett, "60-fsec pulse generation from a self-mode locked Ti:sapphire laser," Opt. Lett. 16, 42-44 (1991). [CrossRef] [PubMed]
  2. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, "Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime," Opt. Lett. 24, 631-633 (1999). [CrossRef]
  3. U. Morgner, F. X. Kärtner, S. H. Cho, H. A. Haus,J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, andT. Tschudi, "Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser," Opt. Lett. 24, 411-413 (1999).
  4. T. Brabec, C. Spielmann, P. F. Curley, and F. Krausz, "Kerr lens mode locking," Opt. Lett. 17, 1292-1294 (1992). [CrossRef] [PubMed]
  5. V. Magni, G. Cerullo, and S. De Silvestri, "ABCD matrix analysis of propagation of Gaussian beams through Kerr media," Opt. Commun. 96, 348-355 (1993). [CrossRef]
  6. V. Magni, G. Cerullo, S. De Silvestri, and A. Monguzzi, "Astigmatism in Gaussian-beam self-focusing and in resonators for Kerr-lens mode locking," J. Opt. Soc. Am. B 12, 476-485 (1995). [CrossRef]
  7. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, "Analytic theory of additive pulse and Kerr lens mode locking," IEEE J. Quantum Electron. 28, 2086-2096 (1992). [CrossRef]
  8. V. I. Kalashnikov, V. P. Kalosha, I. G. Poloyko, and V. P. Mikhailov, "Optimal resonators for self-mode locking of continuous-wave solid-state lasers," J. Opt. Soc. Am. B 14, 964-969 (1997). [CrossRef]
  9. D. Herriott, H. Kogelnik, and R. Kompfner, "Off-axis paths in spherical mirror interferometers," Appl. Opt. 3, 523-526 (1964). [CrossRef]
  10. K. Read, F. Blonigen, N. Riccelli, M. Murnane, and H. Kapteyn, "Low-threshold operation of an ultrashort-pulse mode-locked Ti:sapphire laser," Opt. Lett. 21, 489-491 (1996). [CrossRef] [PubMed]
  11. J.-M. Hopkins, G. J. Valentine, W. Sibbett, J. A. d. Au, F. Morier-Genoud, U. Keller, and A. Valster, "Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser," Opt. Commun. 154, 54-58 (1998). [CrossRef]
  12. A. M. Kowalevicz, T. R. Schibli, F. X. Kaertner, and J. G. Fujimoto, "Ultralow-threshold Kerr-lens mode-locked TiAl2O3 laser," Opt. Lett. 27, 2037-2039 (2002).
  13. A. R. Libertun, R. Shelton, H. C. Kapteyn, and M. M. Murnane, "A 36nJ-15.5MHz extended-cavity Ti:sapphire oscillator," in Conference on Lasers and Electro-Optics (Optical Society of America, 1999), pp. 22-28.
  14. A. Poppe, M. Lenzner, F. Krausz, and C. Spielmann, "A sub-10fs, 2.5-MW Ti:sapphire oscillator," presented at the Ultrafast Optics Conference, Ascona, Switzerland, July 10-16, 1999.
  15. S. H. Cho, F. X. Kärtner, U. Morgner, E. P. Ippen, J. G. Fujimoto, J. E. Cunningham, and W. H. Knox, "Generation of 90-nJ pulses with a 4-MHz repetition-rate Kerr-lens mode-locked TiAl203 laser operating with net positive and negative intracavity dispersion," Opt. Lett. 26, 560-562 (2001). [CrossRef]
  16. J. R. Pierce, Theory and Design of Electron Beams (Van Nostrand, 1954).
  17. S. H. Cho, B. E. Bouma, E. P. Ippen, and J. G. Fujimoto, "Low-repetition-rate high-peak power Kerr-lens mode-locked Ti:Al2O3 laser using a multiple-pass cavity," Opt. Lett. 24, 417-419 (1999). [CrossRef]
  18. A. M. Kowalevicz, A. T. Zare, F. X. Kaertner, J. G. Fujimoto, S. Dewald, U. Morgner, V. Scheuer, and G. Angelow, "Generation of 150-nJ pulses form a multiple-pass cavity Kerr-lens mode-locked Ti:Al2O3 oscillator," Opt. Lett. 28, 1597-1599 (2003). [PubMed]
  19. A. Sennaroglu, A. M. Kowalevicz, F. X. Kaertner, and J. G. Fujimoto, "High-performance, compact, prismless, low-threshold 30-MHz Ti:sapphire laser," Opt. Lett. 28, 1674-1676 (2003). [CrossRef] [PubMed]
  20. R. P. Prasankumar, Y. Hirakawa, A. M. Kowalevicz, F. X. Kaertner, J. G. Fujimoto, and W. Knox, "An extended cavity femtosecond Cr:LiSAF laser pumped by low cost diode lasers," Opt. Express 11, 1265-1269 (2003). [CrossRef] [PubMed]
  21. A. Fernandez, T. Fuji, A. Poppe, A. Furbach, F. Krausz, and A. Apolonski, "Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification," Opt. Lett. 29, 1366-1368 (2004). [CrossRef] [PubMed]
  22. A. Sennaroglu and J. G. Fujimoto, "Design criteria for Herriott-type multi-pass cavities for ultrashot pulse lasers," Opt. Express 11, 1106-1113 (2003). [CrossRef] [PubMed]
  23. W. R. Trutna and R. L. Byer, "Multiple-pass Raman gain cell," Appl. Opt. 19, 301-312 (1980). [CrossRef] [PubMed]
  24. A. Sennaroglu, J. A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, "Compact femtosecond lasers based on novel multipass cavities," IEEE J. Quantum Electron. 40, 519-528 (2004). [CrossRef]
  25. F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, "Design and fabrication of double-chirped mirrors," Opt. Lett. 22, 831-833 (1997). [CrossRef] [PubMed]
  26. L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, "Investigation of the laser properties ofCr3+:LiSrGaF6," IEEE J. Quantum Electron. 28, 2612-2618 (1992). [CrossRef]
  27. B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, "Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers," Opt. Commun. 205, 207-213 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited