OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 5 — May. 1, 2006
  • pp: 861–867

Spectral phase conjugation via extended phase matching

Mankei Tsang  »View Author Affiliations


JOSA B, Vol. 23, Issue 5, pp. 861-867 (2006)
http://dx.doi.org/10.1364/JOSAB.23.000861


View Full Text Article

Enhanced HTML    Acrobat PDF (128 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is shown that the copropagating three-wave-mixing parametric process, with appropriate type-II extended phase matching and pumped with a short second-harmonic pulse, can perform spectral phase conjugation and parametric amplification, which shows a threshold behavior analogous to backward-wave oscillation. The process is also analyzed in the Heisenberg picture, which predicts a spontaneous parametric downconversion rate in agreement with the experimental result reported by Kuzucu et al. [Phys. Rev. Lett. 94, 083601 (2005)] . Applications in optical communications, signal processing, and quantum information processing can be envisaged.

© 2006 Optical Society of America

OCIS Codes
(190.3100) Nonlinear optics : Instabilities and chaos
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(190.5040) Nonlinear optics : Phase conjugation
(270.4180) Quantum optics : Multiphoton processes

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 12, 2005
Revised Manuscript: October 23, 2005
Manuscript Accepted: November 17, 2005

Citation
Mankei Tsang, "Spectral phase conjugation via extended phase matching," J. Opt. Soc. Am. B 23, 861-867 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-5-861


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Yariv, D. Fekete, and D. M. Pepper, "Compensation for channel dispersion by nonlinear optical phase conjugation," Opt. Lett. 4, 52-54 (1979). [CrossRef]
  2. D. A. B. Miller, "Time reversal of optical pulses by four-wave mixing," Opt. Lett. 5, 300-302 (1980). [CrossRef] [PubMed]
  3. C. Joubert, M. L. Roblin, and R. Grousson, "Temporal reversal of picosecond optical pulses by holographic phase conjugation," Appl. Opt. 28, 4604-4612 (1989). [CrossRef] [PubMed]
  4. M. Tsang and D. Psaltis, "Dispersion and nonlinearitycompensation by spectral phase conjugation," Opt. Lett. 28, 1558-1560 (2003). [CrossRef] [PubMed]
  5. D. M. Marom, D. Panasenko, P.-C. Sun, Y. T. Mazurenko, and Y. Fainman, "Real-time spatial-temporal signal processing with optical nonlinearities," IEEE J. Sel. Top. Quantum Electron. 7, 683-693 (2001).
  6. N. W. Carlson, L. J. Rothberg, A. G. Yodh, W. R. Babbitt, and T. W. Mossberg, "Storage and time reversal of light pulses using photon echoes," Opt. Lett. 8, 483-485 (1983). [PubMed]
  7. V. L. da Silva, Y. Silberberg, J. P. Heritage, E. W. Chase, M. A. Saifi, and M. J. Andrejco, "Femtosecond accumulated photon echo in Er-doped fibers," Opt. Lett. 16, 1340-1342 (1991). [CrossRef] [PubMed]
  8. A. Rebane, J. Aaviksoo, and J. Kuhl, "Storage and time reversal of femtosecond light signals via persistent spectral hole burning holography," Appl. Phys. Lett. 54, 93-95 (1989). [CrossRef]
  9. S. Fraigne, J. P. Galaup, J. L. Le Gouet, B. Bousquet, L. Canioni, M. Joffre, and J. P. Likforman, "Amplitude and phase measurements of femtosecond pulses shaped by use of spectral hole burning in free-base naphthalocyanine-doped films," J. Opt. Soc. Am. B 20, 1555-1558 (2003). [CrossRef]
  10. A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, "Femtosecond spectral holography," IEEE J. Quantum Electron. 28, 2251-2261 (1992). [CrossRef]
  11. D. M. Marom, D. Panasenko, R. Rokitski, P.-C. Sun, and Y. Fainman, "Time reversal of ultrafast waveforms by wave mixing of spectrally decomposed waves," Opt. Lett. 25, 132-134 (2000).
  12. M. Tsang and D. Psaltis, "Spectral phase conjugation by quasi-phase-matched three-wave mixing," Opt. Commun. 242, 659-664 (2004). [CrossRef]
  13. M. Tsang and D. Psaltis, "Spectral phase conjugation with cross-phase modulation compensation," Opt. Express 12, 2207-2219 (2004). [CrossRef] [PubMed]
  14. M. Tsang and D. Psaltis, "Spontaneous spectral phase conjugation for coincident frequency entanglement," Phys. Rev. A 71, 043806 (2005). [CrossRef]
  15. Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, "Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion," Phys. Rev. A 67, 053810 (2003). [CrossRef]
  16. V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, "Generating entangled two-photon states with coincident frequencies," Phys. Rev. Lett. 88, 183602 (2002). [CrossRef] [PubMed]
  17. O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kaertner, "Two-photon coincident frequency entanglement via extended phase matching," Phys. Rev. Lett. 94, 083601 (2005). [CrossRef] [PubMed]
  18. F. Konig and F. N. C. Wong, "Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch," Appl. Phys. Lett. 84, 1644-1646 (2004). [CrossRef]
  19. R. Kompfner and N. T. Williams, "Backward-wave tubes," Proc. IRE 41, 1602-1611 (1953). [CrossRef]
  20. H. Heffner, "Analysis of the backward-wave traveling-wave tube," Proc. IRE 42, 930-937 (1954). [CrossRef]
  21. N. M. Kroll, "Excitation of hypersonic vibrations by means of photoelastic coupling of high-intensity light waves to elastic waves," J. Appl. Phys. 36, 34-43 (1965). [CrossRef]
  22. D. Bobroff, "Coupled-mode analysis of phonon-photon parametric backward-wave oscillator," J. Appl. Phys. 36, 1760-1769 (1965). [CrossRef]
  23. S. E. Harris, "Proposed backward wave oscillation in the infrared," Appl. Phys. Lett. 9, 114-116 (1966). [CrossRef]
  24. Y. J. Ding, S. J. Lee, and J. B. Khurgin, "Transversely pumped counterpropagating optical parametric oscillation and amplification," Phys. Rev. Lett. 75, 429-432 (1995). [CrossRef] [PubMed]
  25. A. Yariv, Quantum Electronics (Wiley, 1989).
  26. V. Giovannetti, S. Lloyd, and L. Maccone, "Quantum-enhanced positioning and clock synchronization," Nature 412, 417-419 (2001). [CrossRef] [PubMed]
  27. G. A. Durkin, C. Simon, and D. Bouwmeester, "Multiphoton entanglement concentration and quantum cryptography," Phys. Rev. Lett. 88, 187902 (2002). [CrossRef] [PubMed]
  28. R. A. Fisher, B. R. Suydam, and B. J. Feldman, "Transient analysis of Kerr-like phase conjugators using frequency-domain techniques," Phys. Rev. A 23, 3071-3083 (1981). [CrossRef]
  29. B. van der Pol and H. Bremmer, Operational Calculus Based on the Two-sided Laplace Integral (Cambridge U. Press, 1964).
  30. D. M. Pepper and R. L. Abrams, "Narrow optical bandpass filter via nearly degenerate four-wave mixing," Opt. Lett. 3, 212-214 (1978). [CrossRef] [PubMed]
  31. N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, "Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band," Opt. Lett. 27, 1046-1048 (2002). [CrossRef]
  32. H.-Y. Fan and N.-Q. Jiang, "Special two-mode unitary transform and maximum entanglement state for four wave mixing," Phys. Scr. 71, 277-279 (2005). [CrossRef]
  33. A. Lamas-Linares, J. C. Howell, and D. Bouwmeester, "Stimulated emission of polarization-entangled photons," Nature 412, 887-890 (2001). [CrossRef] [PubMed]
  34. G. Michaeli and A. Arie, "Optimization of quasi-phase-matched non-linear frequency conversion for diffusion bonding applications," Appl. Phys. B 77, 497-503 (2003). [CrossRef]
  35. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited