OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 6 — Jun. 1, 2006
  • pp: 1020–1028

Hybrid modes in a Bragg fiber: dispersion relation and electromagnetic fields

J. Sakai and Jympei Sasaki  »View Author Affiliations


JOSA B, Vol. 23, Issue 6, pp. 1020-1028 (2006)
http://dx.doi.org/10.1364/JOSAB.23.001020


View Full Text Article

Enhanced HTML    Acrobat PDF (784 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present numerical results on dispersion relation and electromagnetic fields in a Bragg fiber. Discussions are focused on the hybrid modes. Dispersion relations for TE, TM, and hybrid modes are investigated in four different ways. It is shown that the HE 11 mode is the lowest-order mode and the TM 01 mode is the first higher-order mode. A photonic bandgap is observed in the dispersion relation if the parameters are appropriately changed. We study the influence of a deviation from the quarter-wave stack condition on the dispersion curve and electromagnetic fields. The deviation has little influence on dispersion characteristics. Electromagnetic fields of hybrid modes vanish in the cladding interfaces under the quarter-wave stack condition. Characteristics of the Bragg fiber are related with those in the circular metallic waveguide.

© 2006 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 29, 2005
Revised Manuscript: December 13, 2005
Manuscript Accepted: December 27, 2005

Citation
Jun-ichi Sakai and Jympei Sasaki, "Hybrid modes in a Bragg fiber: dispersion relation and electromagnetic fields," J. Opt. Soc. Am. B 23, 1020-1028 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-6-1020


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  2. T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkins, and T. J. Sheperd, "Full 2-D photonic bandgaps in silica/air structures," Electron. Lett. 31, 1941-1943 (1995). [CrossRef]
  3. P. R. Villeneuve and M. Piché, "Photonic band gaps in two-dimensional square lattices: square and circular rods," Phys. Rev. B 46, 4969-4972 (1992). [CrossRef]
  4. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  5. P. Yeh, A. Yariv, and E. Marom, "Theory of Bragg fiber," J. Opt. Soc. Am. 68, 1196-1201 (1978). [CrossRef]
  6. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science 289, 415-419 (2000). [CrossRef] [PubMed]
  7. R. Guobin, W. Zhi, L. Shuqin, and J. Shuisheng, "Mode classification and degeneracy in photonic crystal fibers," Opt. Express 11, 1310-1321 (2003). [CrossRef] [PubMed]
  8. H. P. Uranus and H. J. W. M. Hoekstra, "Modelling of microstructured waveguides using a finite-element-based vectorial mode solver with transparent boundary conditions," Opt. Express 12, 2795-2809 (2004). [CrossRef] [PubMed]
  9. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, "Low-loss asymptotically single-mode propagation in large-core omniguide fibers," Opt. Express 9, 748-779 (2001). [CrossRef] [PubMed]
  10. Y. Xu, A. Yariv, J. G. Fleming, and S. Lin, "Asymptotic analysis of silicon based Bragg fiber," Opt. Express 11, 1039-1049 (2003). [CrossRef] [PubMed]
  11. W. Zhi, R. Guobin, L. Shuqin, L. Weijun, and S. Guo, "Compact supercell method based on opposite parity for Bragg fibers," Opt. Express 11, 3542-3549 (2003). [CrossRef] [PubMed]
  12. G. Ouyang, Y. Xu, and A. Yariv, "Comparative study of air-core and coaxial Bragg fibers: single-mode transmission and dispersion characteristics," Opt. Express 9, 733-747 (2001). [CrossRef] [PubMed]
  13. Y. Xu, G. X. Ouyang, R. K. Lee, and A. Yariv, "Asymptotic matrix theory of Bragg fibers," J. Lightwave Technol. 20, 428-440 (2002). [CrossRef]
  14. J. Sakai and P. Nouchi, "Propagation properties of Bragg fiber analyzed by a Hankel function formation," Opt. Commun. 249, 153-163 (2005). [CrossRef]
  15. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. D. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998). [CrossRef] [PubMed]
  16. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002). [CrossRef] [PubMed]
  17. G. Vienne, Y. Xu, C. Jakobsen, H. Deyerl, J. B. Jensen, T. Sørensen, T. P. Hansen, Y. Huang, M. Terrel, R. K. Lee, N. A. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, "Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports," Opt. Express 12, 3500-3508 (2004). [CrossRef] [PubMed]
  18. S. Guo, S. Albin, and R. S. Rogowski, "Comparative analysis of Bragg fibers," Opt. Express 12, 198-207 (2004). [CrossRef] [PubMed]
  19. J. Sakai, "Hybrid modes in a Bragg fiber: general properties and formulas under the quarter-wave stack condition," J. Opt. Soc. Am. B 22, 2319-2330 (2005). [CrossRef]
  20. P. A. Rizzi, Microwave Engineering: Passive Circuits (Prentice-Hall, 1988), Chap. 5.
  21. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (Dover, 1972), Chap. 9.
  22. P. Yeh, Optical Waves in Layered Media (Wiley, 1988), Chap. 6.
  23. E. Snitzer, "Cylindrical dielectric waveguide modes," J. Opt. Soc. Am. 51, 491-498 (1961). [CrossRef]
  24. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983), Sect. 12-9.
  25. T. D. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, "Dispersion tailoring and compensation by modal interactions in omniguide fibers," Opt. Express 11, 1175-1196 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited