OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 6 — Jun. 1, 2006
  • pp: 1029–1036

Electromagnetic interpretation of the quarter-wave stack condition by means of the phase calculation in Bragg fibers

Jun-Ichi Sakai  »View Author Affiliations


JOSA B, Vol. 23, Issue 6, pp. 1029-1036 (2006)
http://dx.doi.org/10.1364/JOSAB.23.001029


View Full Text Article

Enhanced HTML    Acrobat PDF (190 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents an expression for the eigenvalue equation and fields in a Bragg fiber by calculating the phase change that is based on geometrical optics. The quarter-wave stack condition makes it possible to consider that the Bragg fiber has approximately no cladding from the electromagnetic point of view, despite the fact that the Bragg fiber has a periodic cladding. As a result, its eigenvalue equation can be represented in terms of the zeros of Bessel functions and only the core parameters, for a specific case. The eigenvalue equations for HE and EH modes in the Bragg fiber have a formal equivalence to those for TE and TM modes, respectively, in the circular metallic waveguide. Results obtained are in agreement, under a specific limit, with those derived by an asymptotic expansion method.

© 2006 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 5, 2005
Revised Manuscript: December 15, 2005
Manuscript Accepted: December 27, 2005

Citation
Jun-ichi Sakai, "Electromagnetic interpretation of the quarter-wave stack condition by means of the phase calculation in Bragg fibers," J. Opt. Soc. Am. B 23, 1029-1036 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-6-1029


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  2. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  3. K. Tajima, J. Zhou, K. Kurokawa, and K. Nakajima, "Low water peak photonic crystal fibers," in Proceedings of the European Conference on Optical Communication (ECOC, 2003), paper Th4.1.6.
  4. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic bandgap guidance of light in air," Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  5. P. Yeh, A. Yariv, and E. Marom, "Theory of Bragg fiber," J. Opt. Soc. Am. 68, 1196-1201 (1978). [CrossRef]
  6. G. Vienne, Y. Xu, C. Jakobsen, H. Deyerl, J. B. Jensen, T. Sørensen, T. P. Hansen, Y. Huang, M. Terrel, R. K. Lee, N. A. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, "Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports," Opt. Express 12, 3500-3508 (2004). [CrossRef] [PubMed]
  7. J. C. Knight, T. A. Birks, P. St. J. Russell, and J. P. de Sandro, "Properties of photonic crystal fiber and the effective index model," J. Opt. Soc. Am. A 15748-752 (1998). [CrossRef]
  8. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, G. M. Sterke, and L. G. Botten, "Multipole method for microstructured optical fibers. 1. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002). [CrossRef]
  9. C. Yu and H. Chang, "Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers," Opt. Express 12, 6165-6177 (2004). [CrossRef] [PubMed]
  10. W. Zhi, R. Guobin, L. Shuqin, L. Weijun, and S. Guo, "Compact supercell method based on opposite parity for Bragg fibers," Opt. Express 11, 3542-3549 (2003). [CrossRef] [PubMed]
  11. J. A. Monsoriu, E. Silvestre, A. Ferrando, P. Andrés, and J. J. Miret, "High-index-core Bragg fibers: dispersion properties," Opt. Express 11, 1400-1405 (2003). [CrossRef] [PubMed]
  12. P. R. McIsaac, "Symmetry-induced modal characteristics of uniform waveguides - 1: Summary of results," IEEE Trans. Microwave Theory Tech. MTT-23, 421-4429 (1975). [CrossRef]
  13. G. Ouyang, Y. Xu, and A. Yariv, "A comparative study of air-core and coaxial Bragg fibers: single-mode transmission and dispersion characteristics," Opt. Express 9, 733-747 (2001). [CrossRef] [PubMed]
  14. Y. Xu, G. X. Ouyang, R. K. Lee, and A. Yariv, "Asymptotic matrix theory of Bragg fibers," J. Lightwave Technol. 20, 428-440 (2002). [CrossRef]
  15. J. Sakai and P. Nouchi, "Propagation properties of Bragg fiber analyzed by a Hankel function formalism," Opt. Commun. 249, 153-163 (2005). [CrossRef]
  16. J. Sakai, "Hybrid modes in a Bragg fiber: general properties and formulas under the quarter-wave stack condition," J. Opt. Soc. Am. B 22, 2319-2330 (2005). [CrossRef]
  17. J. D. Love and A. W. Snyder, "Optical fiber eigenvalue equation: plane wave derivation," Appl. Opt. 15, 2121-2125 (1976). [CrossRef] [PubMed]
  18. J. B. Keller and S. I. Rubinow, "Asymptotic solution of eigenvalue problems," Ann. Phys. (N.Y.) 9, 24-75 (1960). [CrossRef]
  19. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (Dover, 1972), Chap. 9.
  20. P. A. Rizzi, Microwave Engineering: Passive Circuits (Prentice Hall, 1988), Chap. 5.
  21. J. Sakai and J. Sasaki, "Hybrid modes in a Bragg fiber: dispersion relation and electromagnetic field," J. Opt. Soc. Am. B 23, 1020-1028 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited