OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 7 — Jul. 1, 2006
  • pp: 1478–1483

Engineering the bandgap of a two-dimensional anisotropic photonic crystal

G. Alagappan, X. W. Sun, P. Shum, and M. B. Yu  »View Author Affiliations


JOSA B, Vol. 23, Issue 7, pp. 1478-1483 (2006)
http://dx.doi.org/10.1364/JOSAB.23.001478


View Full Text Article

Enhanced HTML    Acrobat PDF (364 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The photonic band structures of two-dimensional square lattice photonic crystals made of anisotropic materials with one of the principal axes oriented along the extension direction of cylinders are studied. The band structure of the photonic crystal can be substantially engineered to achieve large bandgaps by reorienting the other two principal axes of the anisotropy media in the periodic plane of the photonic crystal. In particular, it is shown that large full bandgap for H polarization can be created for a photonic crystal with circular holes in an anisotropic matrix medium. For pillar-type photonic crystals, we show that large partial bandgaps for H polarization can be created in half of the irreducible Brillouin zone. With the use of anisotropic materials and the flexibility of arranging the principal axes, the requirement on the filling ratio, refractive index and anisotropy to achieve the largest bandgap is greatly alleviated.

© 2006 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(230.2090) Optical devices : Electro-optical devices

ToC Category:
Photonic Crystals

History
Original Manuscript: October 19, 2005
Revised Manuscript: January 6, 2006
Manuscript Accepted: February 15, 2006

Citation
G. Alagappan, X. W. Sun, P. Shum, and M. B. Yu, "Engineering the bandgap of a two-dimensional anisotropic photonic crystal," J. Opt. Soc. Am. B 23, 1478-1483 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-7-1478


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  2. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulus, R. D. Meade, and J. N. Winn, Photonic Crystals Molding the Flow of Light (Princeton U. Press, 1995), pp. 94-100.
  4. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001), pp. 14, 116-121, 201-205.
  5. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  6. T. Sondergaard and K. H. Dridi, "Energy flow in photonic crystal waveguides," Phys. Rev. B 61, 15688-15696 (2000). [CrossRef]
  7. B. D'Urso, O. Painter, J. O'Brien, T. Tombrello, A. Yariv, and A. Scherer, "Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities," J. Opt. Soc. Am. B 15, 1155-1159 (1998). [CrossRef]
  8. R. W. Ziolkowski and M. Tanaka, "FDTD analysis of PBG waveguides, power splitters and switches," Opt. Quantum Electron. 31, 843-855 (1999). [CrossRef]
  9. E. Centeno, B. Guizal, and D. Felbacq, "Multiplexing and demultiplexing with photonic crystals," J. Opt. A 1, L10-L13 (1999). [CrossRef]
  10. J. P. Mondia, H. M. van Driel, W. Jiang, A. R. Cowan, and J. F. Young, "Enhanced second-harmonic generation from planar photonic crystals," Opt. Lett. 28, 2500-2502 (2003). [CrossRef] [PubMed]
  11. T. Baba, "Photonic crystal light deflection devices using the superprism effect," IEEE J. Quantum Electron. 38, 909-914 (2002). [CrossRef]
  12. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000). [CrossRef]
  13. Z.-Y. Li, J. Wang, and B.-Y. Gu, "Creation of partial bandgaps in anisotropic photonic-band-gap structures," Phys. Rev. B 58, 3721-3729 (1998). [CrossRef]
  14. I. H. H. Zabel and D. Stroud, "Photonic band structures of optically anisotropic periodic arrays," Phys. Rev. B 48, 5004-5012 (1993). [CrossRef]
  15. Z.-Y. Li, J. Wang, and B.-Y. Gu, "Large absolute bandgap in 2D anisotropic photonic crystals," Phys. Rev. Lett. 81, 2574-2577 (1998). [CrossRef]
  16. C. M. Chang and H. P. D. Shieh, "Simple formulas for calculating wave propagation and splitting in anisotropic media," Jpn. J. Appl. Phys. Part 1 40, 6391-6395 (2001). [CrossRef]
  17. A. Yariv and P. Yeh, Optical Wave in Crystals (Wiley, 1996), pp. 69-80, 85.
  18. K. Busch and S. John, "Photonic bandgap formation in certain self-organizing systems," Phys. Rev. E 58, 3896-3908 (1998). [CrossRef]
  19. K.-M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990). [CrossRef] [PubMed]
  20. R. Johannes and W. Haas, "Temperature dependence of the refractive index nc in SbSI through the ferroelectric-paraelectric transition," Appl. Opt. 6, 1059-1061 (1967). [CrossRef] [PubMed]
  21. A. Mansingh and T. Sudersena Rao, "Growth and characterization of flash-evaporated ferroelectric antimony sulphoiodide thin films," J. Appl. Phys. 58, 3530-3535 (1985). [CrossRef]
  22. S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. Part 1 43, 7634-7638 (2004). [CrossRef]
  23. F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited