OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 8 — Aug. 1, 2006
  • pp: 1531–1539

Layer-peeling algorithm for reconstructing the birefringence in optical emulators

Etgar C. Levy and Moshe Horowitz  »View Author Affiliations

JOSA B, Vol. 23, Issue 8, pp. 1531-1539 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (313 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new theoretical method, based on a layer-peeling algorithm, for extracting the spatial distribution of the birefringence parameters of an optical emulator. The method enables one to extract the spatial dependence of both the refractive index difference and the orientation angle of the birefringence axes. The layer-peeling algorithm is designed to minimize the accumulated error, and it enables one to accurately reconstruct the birefringence parameters even when a strong noise is added to the input data.

© 2006 Optical Society of America

OCIS Codes
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(290.3200) Scattering : Inverse scattering

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 7, 2005
Revised Manuscript: February 14, 2006
Manuscript Accepted: March 13, 2006

Etgar C. Levy and Moshe Horowitz, "Layer-peeling algorithm for reconstructing the birefringence in optical emulators," J. Opt. Soc. Am. B 23, 1531-1539 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. K. A. Wai and C. R. Menyuk, "Polarization mode dispersion, decorrelation and diffusion in optical fibers with randomly varying birefringence," J. Lightwave Technol. 14, 148-157 (1996). [CrossRef]
  2. D. Marcuse, C. R. Menyuk, and P. K. A. Wai, "Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence," J. Lightwave Technol. 15, 1735-1746 (1997). [CrossRef]
  3. G. Foschini and C. D. Poole, "Statistical theory of polarization dispersion in single mode fibers," J. Lightwave Technol. 9, 1439-1456 (1991). [CrossRef]
  4. P. Ciprut, B. Gisin, N. Gisin, R. Passy, J. Von der Weid, F. Prieto, and C. Zimmer, "Second-order polarization mode dispersion: impact on analog and digital transmissions," J. Lightwave Technol. 16, 757-771 (1998). [CrossRef]
  5. G. Foschini, R. Jopson, L. Nelson, and H. Kogelnik, "The statistics of PMD-induced chromatic fiber dispersion," J. Lightwave Technol. 17, 1560-1565 (1999). [CrossRef]
  6. C. H. Prola, J. A. Pereira da Silva, A. O. Dal Forno, R. Passy, J. P. von der Weid, and N. Gisin, "PMD emulators and signal distortion in 2.48-Gb/s IM-DD lightwave systems," IEEE Photon. Technol. Lett. 9, 842-844 (1997). [CrossRef]
  7. A. O. Dal Forno, A. Paradisi, R. Passy, and J. P. von der Weid, "Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers," IEEE Photon. Technol. Lett. 12, 296-298 (2000). [CrossRef]
  8. I. T. Lima, R. Khosravani, P. Ebrahimi, E. Ibragimov, C. R. Menyuk, and A. E. Willner, "Comparison of polarization mode dispersion emulators," J. Lightwave Technol. 19, 1872-1881 (2001). [CrossRef]
  9. R. Khosravani, T. Lima, P. Ebrahimi, E. Ibragimov, A. E. Willner, and C. R. Menyuk, "Time and frequency domain characteristics of polarization-mode dispersion emulators," IEEE Photon. Technol. Lett. 13, 127-129 (2001). [CrossRef]
  10. R. Noé, D. Sandel, M. Yoshida-Dierolf, S. Hinz, V. Mirvoda, A. Schöpflin, C. Glingener, E. Gottwald, C. Scheerer, G. Fischer, T. Weyrauch, and W. Haase, "Polarization mode dispersion compensation at 10, 20, and 40Gb/s with various optical equalizers," J. Lightwave Technol. 17, 1602-1615 (1999). [CrossRef]
  11. H. Bülow, "PMD mitigation techniques and their effectiveness in installed fiber," in Optical Fiber Communications Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), pp. 110-112.
  12. F. Corsi, A. Galtarossa, and L. Palmieri, "Beat length characterization based on backscattering analysis in randomly perturbed single-mode fibers," J. Lightwave Technol. 17, 1172-1178 (1999). [CrossRef]
  13. A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, "Measurements of beat length and perturbation length in long single-mode fibers," Opt. Lett. 25, 364-386 (2000). [CrossRef]
  14. A. Galtarossa, L. Palmieri, A. Pizzinat, M. Sachiano, and T. Tambosso, "Measurements of local beat length and differential group delay in installed single-mode fibers," J. Lightwave Technol. 18, 1389-1394 (2000).
  15. B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, "Local birefringence measurements in single-mode fibers with coherent optical Frequency-domain reflectometry," IEEE Photon. Technol. Lett. 10, 1458-1460 (1998). [CrossRef]
  16. M. Wegmuller, M. Legre, and N. Gisin, "Analysis of the polarization evolution in a ribbon cable using high-resolution coherent OFDR," IEEE Photon. Technol. Lett. 13, 145-147 (2001). [CrossRef]
  17. M. Wegmuller, M. Legre, and N. Gisin, "Distributed beatlength measurement in single-mode fibers with optical frequency-domain reflectometry," IEEE Photon. Technol. Lett. 20, 828-835 (2002).
  18. M. Yoshida, T. Miyamoto, N. Zou, K. Nakamura, and H. Ito, "Novel PMD measurement method based on OFDR using a frequency-shifted feedback fiber laser," Opt. Express 9, 207-211 (2001). [CrossRef] [PubMed]
  19. A. M. Bruckstein, B. C. Levy, and T. Kailath, "Differential methods in inverse scattering," SIAM J. Appl. Math. 45, 312-335 (1985). [CrossRef]
  20. A. Rosenthal and M. Horowitz, "Inverse scattering algorithm for reconstructing strongly reflecting fiber Bragg gratings," IEEE J. Quantum Electron. 39, 1018-1026 (2003). [CrossRef]
  21. D. Sandel, R. Noe, G. Heise, and B. Borchert, "Optical network analysis and longitudinal structure characterization of fiber Bragg grating," J. Lightwave Technol. 116, 2435-2442 (1998).
  22. O. H. Waagaard and J. Skaar, "Synthesis of birefringent reflective grating," J. Opt. Soc. Am. A 21, 1207-1220 (2004). [CrossRef]
  23. D. Sandel, V. Mirvoda, S. Bhandare, F. Wust, and R. No, "Some enabling techniques for polarization mode dispersion compensation," J. Lightwave Technol. 21, 1198-1210 (2003). [CrossRef]
  24. J. E. Román, M. Y. Frankel, and R. D. Esman, "Spectral characterization of fiber gratings with high resolution," Opt. Lett. 23, 939-941 (1998). [CrossRef]
  25. S. Keren and M. Horowitz, "Interrogation of fiber gratings by use of low-coherence spectral interferometry of noiselike pulses," Opt. Lett. 26, 328-330 (2001). [CrossRef]
  26. W. V. Sorin and D. M. Baney, "Measurement of Rayleigh backscattering at 1.55μm with 32μm spatial resolution," in Instruments and Photonics Laboratory, Tech. Rpt. HPL-91-180 (Hewlett-Packard Laboratories, 1991).
  27. R. Passy, N. Gisin, and J. P. Von der Weid, "High-sensitivity-coherent optical frequency-domain reflectometry for characterization of fiber-optic network components," IEEE Photon. Technol. Lett. 7, 667-669 (1995). [CrossRef]
  28. K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, "Coherent optical frequency domain reflectometry for a long single-mode optical fiber using a coherent lightwave source and an external phase modulator," IEEE Photon. Technol. Lett. 7, 804-806 (1995). [CrossRef]
  29. E. Hecht, "Polarization," in Optics (Addison Wesley Longman, 1998), pp. 319-376.
  30. C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, "Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror," IEEE Photon. Technol. Lett. 16, 2535-2537 (2004). [CrossRef]
  31. E. Brinkmeyer, "Forward-backward transmission in birefringent single-mode fibers: interpretation of polarization-sensitive measurements," Opt. Lett. 6, 575-577 (1981). [CrossRef] [PubMed]
  32. Y. Zhao, B. Wang, and Q. Tang, "Jones matrix for round-trip wave propagation in nonreciprocal media," Appl. Opt. 31, 4471-4473 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited