OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 8 — Aug. 1, 2006
  • pp: 1565–1573

Spectrally engineered photonic molecules as optical sensors with enhanced sensitivity: a proposal and numerical analysis

Svetlana V. Boriskina  »View Author Affiliations

JOSA B, Vol. 23, Issue 8, pp. 1565-1573 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (634 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a theoretical study of clusters of evanescently coupled 2D whispering-gallery mode optical microcavities (termed “photonic molecules”) as chemosensing and biosensing platforms. Photonic molecules (PMs) supporting modes with narrow linewidths, wide mode spacing, and greatly enhanced sensitivity to the changes in the dielectric constant of their environment and to the presence of individual subwavelength-sized nanoparticles in the PM evanescent-field region are numerically designed. This type of optical biosensor can be fabricated in a variety of material platforms and integrated on a single chip that makes it a promising candidate for a small and robust laboratory-on-a-chip device. Possible applications of the developed methodology and the designed PM structures to near-field microscopy, single nanoemitter microcavity lasing, and cavity-controlled single-molecule fluorescence enhancement are also discussed.

© 2006 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors
(140.4780) Lasers and laser optics : Optical resonators
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

Original Manuscript: January 25, 2006
Revised Manuscript: March 21, 2006
Manuscript Accepted: March 25, 2006

Virtual Issues
Vol. 1, Iss. 9 Virtual Journal for Biomedical Optics

Svetlana V. Boriskina, "Spectrally engineered photonic molecules as optical sensors with enhanced sensitivity: a proposal and numerical analysis," J. Opt. Soc. Am. B 23, 1565-1573 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Boyd and J. E. Heebner, "Sensitive disk resonator photonic biosensor," Appl. Opt. 40, 5742-5747 (2001). [CrossRef]
  2. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, "Integrated optical microcavities for enhanced evanescent-wave spectroscopy," Opt. Lett. 27, 1504-1506 (2002). [CrossRef]
  3. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, "Sensor based on an integrated optical microcavity," Opt. Lett. 27, 512-514 (2002). [CrossRef]
  4. C.-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003). [CrossRef]
  5. F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification byspectroscopic shift of 2 microsphere cavities," Biophys. J. 85, 1974-1979 (2003). [CrossRef] [PubMed]
  6. J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "InGaAsP annular Bragg lasers: theory, applications, and modal properties," IEEE J. Sel. Top. Quantum Electron. 11, 476-484 (2005). [CrossRef]
  7. H. Quan and Z. Guo, "Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors," J. Quant. Spectrosc. Radiat. Transf. 93, 231-243 (2005). [CrossRef]
  8. W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, "Detection of chemical species using ultraviolet microdisk lasers," Appl. Phys. Lett. 85, 3666-3668 (2004). [CrossRef]
  9. S. Blair and Y. Chen, "Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities," Appl. Opt. 40, 570-582 (2001). [CrossRef]
  10. H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical microcavity laser based on the evanescent-wave-coupled gain," Phys. Rev. Lett. 85, 3161-3164 (2000). [CrossRef] [PubMed]
  11. R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, "Threshold characteristics of semiconductor microdisk lasers," Appl. Phys. Lett. 63, 1310-1312 (1993). [CrossRef]
  12. M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005). [CrossRef] [PubMed]
  13. M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, and P. A. Knipp, "Optical modes in photonic molecules," Phys. Rev. Lett. 81, 2582-2586 (1998). [CrossRef]
  14. S. V. Boriskina, "Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of WG modes in symmetrical photonic molecules," Opt. Lett. 31, 338-340 (2006). [CrossRef] [PubMed]
  15. E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, "Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with whispering-gallery modes," Opt. Lett. 31, 921-923 (2006). [CrossRef] [PubMed]
  16. A. Nakagawa, S. Ishii, and T. Baba, "Photonic molecule laser composed of GaInAsP microdisks," Appl. Phys. Lett. 86, 041112 (2005). [CrossRef]
  17. A. L. Burin, H. Cao, G. C. Schatz, and M. A. Ratner, "High-quality optical modes in low-dimensional arrays of nanoparticles: application to random lasers," J. Opt. Soc. Am. B 21, 121-131 (2004). [CrossRef]
  18. S. V. Boriskina, P. Sewell, T. M. Benson, and A. I. Nosich, "Accurate simulation of 2D optical microcavities with uniquely solvable boundary integral equations and trigonometric-Galerkin discretization," J. Opt. Soc. Am. A 21, 393-402 (2004). [CrossRef]
  19. M. Abramovitz and I. Stegun, Handbook of Mathematical Functions (Dover, 1970).
  20. G. Tayeb and D. Maystre, "Rigorous theoretical study of finite-size two-dimensional photonic crystals doped by microcavities," J. Opt. Soc. Am. A 14, 3323-3332 (1997). [CrossRef]
  21. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, "Spectral shift and Q change of circular and square-shaped optical microcavity modes due to periodical sidewall surface roughness," J. Opt. Soc. Am. B 21, 1792-1796 (2004). [CrossRef]
  22. H. Yokoyama and S. D. Brorson, "Rate equation analysis of microcavity lasers," J. Appl. Phys. 66, 4801-4805 (1989). [CrossRef]
  23. M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, "Enhanced fluorescent yields through cavity quantum electrodynamic effects in microdroplets," J. Opt. Soc. Am. B 11, 1297-1304 (1994). [CrossRef]
  24. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, "Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared," Opt. Lett. 19, 2062-2064 (1994). [CrossRef] [PubMed]
  25. A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003). [CrossRef]
  26. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001). [CrossRef]
  27. Z. Chen, A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique," Opt. Express 12, 1214-1220 (2004). [CrossRef] [PubMed]
  28. S. Gotziger, O. Benson, and V. Sandoghdar, "Influence of a sharp fiber tip on high-Q modes of a microsphere resonator," Opt. Lett. 27, 80-82 (2002). [CrossRef]
  29. A. Giusto, S. Savasta, and R. Saija, "Interaction of a microresonator with a nanoscatterer," J. Phys.: Conf. Ser. 6, 103-108 (2005). [CrossRef]
  30. M. Pelton and Y. Yamamoto, "Ultralow threshold laser using a single quantum dot and a microsphere cavity," Phys. Rev. A 59, 2418-2421 (1999). [CrossRef]
  31. M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-controlled single-molecule fluorescence," ChemPhysChem 6, 2190-2196 (2005). [CrossRef] [PubMed]
  32. R. W. Boyd, J. E. Heebner, N. N. Lepeshkin, Q.-H. Park, A. Schweinsberg, G. W. Wicks, A. S. Baca, J. E. Fajardo, R. R. Hancock, M. A. Lewis, R. M. Boysel, M. Quesada, R. Welty, A. R. Bleier, J. Treichler, and R. E. Slusher, "Nanofabrication of optical structures and devices for photonics and biophotonics," J. Mod. Opt. 50, 2543-2550 (2003). [CrossRef]
  33. T. Baba, M. Fujita, A. Sakai, M. Kihara, and R. Watanabe, "Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10μm," IEEE Photon. Technol. Lett. 9, 878-880 (1997). [CrossRef]
  34. K. Petter, T. Kipp, Ch. Heyn, D. Heitmann, and C. Schuller, "Fabrication of large periodic arrays of AlGaAs microdisks by laser-interference lithography and selective etching," Appl. Phys. Lett. 81, 592-594 (2002). [CrossRef]
  35. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, "Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction," Opt. Lett. 26, 1888-1890 (2001). [CrossRef]
  36. M. Lohmeyer, "Mode expansion modeling of rectangular integrated optical microresonators," Opt. Quantum Electron. 34, 541-557 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited