OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 8 — Aug. 1, 2006
  • pp: 1626–1629

Generation of mid-infrared wavelengths larger than 4.0 μ m in a mirrorless counterpropagating configuration

Hong Su, Shuang-chen Ruan, and Yuan Guo  »View Author Affiliations

JOSA B, Vol. 23, Issue 8, pp. 1626-1629 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (84 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report that mid-infrared wavelengths larger than 4.0 μ m are efficiently generated in a periodically poled lithium niobate as a counterpropagating backward optical parametric oscillator. In comparison with the forward optical parametric oscillator, the backward configuration does not require a cavity mirror to establish laser oscillations. Also, the changing curves of the threshold intensity with and without the idler absorption for beyond 4.0 μ m generation are quite different. Whether the idler absorption is considered or not, the conversion efficiency of both the signal and the idler will always increase with the pump intensity above the threshold. However, as the idler absorption cannot be neglected, the signal becomes larger than that without the idler absorption, while the idler gets smaller, and the threshold intensity is lower than that in forward QPM optical parametric generation without a cavity mirror only when the idler wavelength is less than 5.6 μ m . The design that is presented offers practical mid-infrared generation with a low pump threshold.

© 2006 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers

ToC Category:
Nonlinear Optics

Original Manuscript: January 23, 2006
Manuscript Accepted: March 31, 2006

Hong Su, Shuang-chen Ruan, and Yuan Guo, "Generation of mid-infrared wavelengths larger than 4.0 μm in a mirrorless counterpropagating configuration," J. Opt. Soc. Am. B 23, 1626-1629 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Henningsen, M. Garbuny, and R. L. Byer, "Remote detection of CO by parametric tunable laser," Appl. Phys. Lett. 24, 242-244 (1974). [CrossRef]
  2. R. A. Baumgartner and R. L. Byer, "Remote SO2 measurement at 4 μm with a continuously tunable source," Opt. Lett. 2, 163-165 (1978). [CrossRef] [PubMed]
  3. S. E. Harris, "Proposed backward wave oscillation in the infrared," Appl. Phys. Lett. 9, 114-116 (1966). [CrossRef]
  4. Y. J. Ding, S. J. Lee, and J. B. Khurgin, "Transversely pump counterpropagating optical parametric oscillation and amplification," Phys. Rev. Lett. 75, 429-432 (1995). [CrossRef] [PubMed]
  5. Y. J. Ding and J. B. Khurgin, "Backward optical parametric oscillators and amplifiers," IEEE J. Quantum Electron. 32, 1574-1582 (1996). [CrossRef]
  6. G. D. Landry and T. A. Maldonado, "Switching and second harmonic generation using counterpropagating QPM in a mirrorless configuration," J. Lightwave Technol. 17, 316-327 (1999). [CrossRef]
  7. G. D. Landry and T. A. Maldonado, "Counterpropagating quasi-phase matching: a generalized analysis," J. Opt. Soc. Am. B 21, 1509-1520 (2004). [CrossRef]
  8. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, "Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3," Opt. Lett. 21, 591-593 (1996). [CrossRef] [PubMed]
  9. L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, and D. C. Hanna, "Efficient, low-threshold synchronously-pumped parametric oscillation in periodically poled lithium niobate over the 1.3 μmto5.3 μm range," Opt. Commun. 152, 55-58 (1998). [CrossRef]
  10. K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, "Broadly tunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate," Opt. Lett. 22, 1458-1460 (1997). [CrossRef]
  11. A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mallis, "Surface domain engineering in congruent lithium niobate single crystals: A route to submicron periodic poling," Appl. Phys. Lett. 81, 4946-4948 (2002). [CrossRef]
  12. C. B. Clausen, O. Bang, and Y. S. Kivshar, "Spatial solitons and induced Kerr effects in quasi-phase-matched quadratic media," Phys. Rev. Lett. 78, 4749-4752 (1997). [CrossRef]
  13. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1991).
  14. Y. Q. Qin, S. M. Pietralunga, and M. Martinelli, "Quasi-phase-matching difference frequency generation in a mirrorless counterpropagating configuration," J. Lightwave Technol. 19, 1298-1306 (2001). [CrossRef]
  15. Y. Paltier, D. Mahalu, H. Shtrikman, G. Bunin, and U. Meirav, "Short period surface superlattices formed by plasma etching," Semicond. Sci. Technol. 12, 987-990 (1997). [CrossRef]
  16. M. Sato, T. Hatanaka, S. Izumi, T. Taniuchi, and H. Ito, "Generation of 6.6 μm optical parametric oscillation with periodically poled LiNbO3," Appl. Opt. 38, 2560-2563 (1999). [CrossRef]
  17. L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, "Optical parametric oscillation out to 6.3 μm in periodically poled lithium niobate under strong idler absorption," Appl. Phys. Lett. 73, 1610-1612 (1998). [CrossRef]
  18. H. Su, Y. Q. Qin, H. C. Guo, and S. H. Tang, "Periodically poled LiNbO3: Optical parametric oscillation at wavelengths larger than 4.0 μm with strong idler absorption by focused Gaussian beam," J. Appl. Phys. 97, 113105-113105-04 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited