OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 8 — Aug. 1, 2006
  • pp: 1660–1665

Metal heterostructure-based nanophotonic devices: finite-difference time-domain numerical simulations

Guo Ping Wang and Bing Wang  »View Author Affiliations

JOSA B, Vol. 23, Issue 8, pp. 1660-1665 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (592 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically demonstrate a kind of metal heterostructure (MHS) for high-efficiency nanofocusing and nanoguiding of light through finite-difference time-domain simulations. The results reveal that Al–Ag constructed MHSs with a trapezoid Ag guide can focus an incident light into a domain of about 0.004 λ 2 with higher than 96% focusing efficiency, whereas that with a rectangular Ag guide can transport light energy within 65 nm × 55 nm cross section with a propagation loss as low as 2.0 dB μ m . The physics behind the above interesting nanophotonic properties is explained on the basis of the principle of conventional integrated optics, and potential applications of MHSs in other nanophotonic devices are also discussed.

© 2006 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Optical Devices

Original Manuscript: August 26, 2005
Revised Manuscript: February 2, 2006
Manuscript Accepted: April 1, 2006

Guo Ping Wang and Bing Wang, "Metal heterostructure-based nanophotonic devices: finite-difference time-domain numerical simulations," J. Opt. Soc. Am. B 23, 1660-1665 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Novotny, D. W. Pohl, and B. Hecht, "Scanning near-field optical probe with ultrasmall spot size," Opt. Lett. 20, 970-972 (1995). [CrossRef] [PubMed]
  2. S. M. Nie and S. R. Emery, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997). [CrossRef] [PubMed]
  3. D. G. Grier, "A revolution in optical manipulation," Anzen Kogaku 424, 810-816(2003).
  4. E. Betzig and R. J. Chichester, "Single molecules observed by near-field scanning optical microscopy," Science 262, 1422-1425(1993). [CrossRef] [PubMed]
  5. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669(1998). [CrossRef]
  6. J. C. Weeber, Y. Lacroute, and A. Dereux, "Optical near-field distributions of surface plasmon waveguide modes," Phys. Rev. B 68, 115401 (2003). [CrossRef]
  7. S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, "Bend loss in surface plasmon polariton band-gap structures," Appl. Phys. Lett. 79, 1076-1078(2001). [CrossRef]
  8. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  9. B. Wang and G. P. Wang, "Surface plasmon polariton propagation in nanoscale metal gap waveguides," Opt. Lett. 29, 1992-1994(2004). [CrossRef] [PubMed]
  10. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333(1998). [CrossRef]
  11. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232(2003). [CrossRef] [PubMed]
  12. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997).
  13. K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface-plasmon-polariton gap waveguides," Appl. Phys. Lett. 82, 1158-1160 (2003). [CrossRef]
  14. B. Wang and G. P. Wang, "Metal heterowaveguides for nanometric focusing of light," Appl. Phys. Lett. 85, 3599-3601(2004). [CrossRef]
  15. J. X. Fang, Z. Q. Cao, and F. Z. Yang, Physical Foundations of Optical Waveguide Technology (Shanghai Jiaotong U. Press, 1987).
  16. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  17. G. P. Wang, Y. Yi, and B. Wang, "Evanescent coupling of transmitted light through an array of holes in a metallic film assisted by transverse surface current," J. Phys.: Condens. Matter 15, 8147-8156 (2003). [CrossRef]
  18. Y. Yi, G. P. Wang, Y. B. Long, and H. Shang, "Optical transmission enhancement of two-dimensional subwavelength hole arrays in metallic films," Acta Phys. Sin. 52, 604-608(2003).
  19. I. P. Kaminow, W. L. Mammel, and H. P. Weber, "Metal-clad optical waveguides: analytical and experimental study," Appl. Opt. 13, 396-405 (1974). [CrossRef] [PubMed]
  20. Z. Y. Li and K. M. Ho, "Anomalous propagation loss in photonic crystal waveguides," Phys. Rev. Lett. 92, 063904 (2004). [CrossRef] [PubMed]
  21. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477(1997). [CrossRef] [PubMed]
  22. B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited