OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 8 — Aug. 1, 2006
  • pp: 1692–1699

Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping

Michael H. Frosz, Thorkild Sørensen, and Ole Bang  »View Author Affiliations

JOSA B, Vol. 23, Issue 8, pp. 1692-1699 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (154 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Supercontinuum generation using picosecond pulses pumped into cobweb photonic crystal fibers is investigated. Dispersion profiles are calculated for several fiber designs and used to analytically investigate the influence of the fiber structural parameters (core size and wall thickness) on the location of the Stokes and anti-Stokes bands and gain bandwidth. An analysis shows that the Raman effect is responsible for reducing the four-wave mixing gain and a slight reduction in the corresponding frequency shift from the pump, when the frequency shift is much larger than the Raman shift. Using numerical simulations we find that four-wave mixing is the dominant physical mechanism for the pumping scheme considered, and that there is a trade-off between the spectral width and the spectral flatness of the supercontinuum. The balance of this trade-off is determined by nanometer-scale design of the fiber structural parameters. It is also shown that the relatively high loss of the nonlinear fiber does not significantly affect the supercontinuum generation.

© 2006 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Photonic Crystals

Original Manuscript: October 28, 2005
Revised Manuscript: March 26, 2006
Manuscript Accepted: April 7, 2006

Michael H. Frosz, Thorkild Sørensen, and Ole Bang, "Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping," J. Opt. Soc. Am. B 23, 1692-1699 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, 1989).
  2. A. Freiberg, J. A. Jackson, S. Lin, and N. W. Woodbury, "Subpicosecond pump-supercontinuum probe spectroscopy of LH2 photosynthetic antenna," J. Phys. Chem. A 102, 4372-4380 (1998). [CrossRef]
  3. P. V. Kelkar, F. Coppinger, A. S. Bhusan, and B. Jalali, "Time-domain optical sensing, "Electron. Lett. 35, 1661-1662 (1999). [CrossRef]
  4. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001). [CrossRef]
  5. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am. B 19, 753-764 (2002). [CrossRef]
  6. N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, "Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing," J. Opt. Soc. Am. B 20, 2329-2337 (2003). [CrossRef]
  7. M. H. Frosz, P. Falk, and O. Bang, "The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength," Opt. Express 13, 6181-6192 (2005). [CrossRef] [PubMed]
  8. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography--principles and applications," Rep. Prog. Phys. 66, 239-303 (2003). [CrossRef]
  9. A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, "Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses," J. Opt. Soc. Am. B 19, 2165-2170 (2002). [CrossRef]
  10. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000). [CrossRef]
  11. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12, 2864-2869 (2004). [CrossRef] [PubMed]
  12. G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, "Enhanced bandwidth of supercontinuum generated in microstructured fibers," Opt. Express 12, 3471-3480 (2004). [CrossRef] [PubMed]
  13. P. Falk, M. H. Frosz, and O. Bang, "Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths," Opt. Express 13, 7535-7545 (2005). [CrossRef] [PubMed]
  14. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Wirideler, B. J. Eggleton, and S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19, 765-771 (2002). [CrossRef]
  15. K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, "Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55μm," in Optical Fiber Communication Conference (Optical Society of America, 2002), pp. FA91-FA93.
  16. M. H. Frosz, T. Sørensen, and O. Bang, "Nano-engineering of photonic crystal fibers for Supercontinuum generation," in Photonic Crystals and Fibers, W. Urbanczyk, B. Jaskorzynska, and P. St. J. Russell, eds., Proc. SPIE 5950, 185-192 (2005).
  17. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  18. J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, "Four-wave mixing in microstructure fiber," Opt. Lett. 26, 1048-1050 (2001). [CrossRef]
  19. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres," Opt. Express 12, 299-309 (2004). [CrossRef] [PubMed]
  20. W. Shuang-Chun, S. Wen-Hua, Z. Hua, F. Xi-Quan, Q. Lie-Jia, and F. Dian-Yuan, "Influence of higher-order dispersions and Raman delayed response on modulation instability in microstructured fibres," Chin. Phys. Lett. 20, 852-854, doi:10.1088/0256-307X/20/6/321 (2003). [CrossRef]
  21. K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989). [CrossRef]
  22. S. Coen, D. A. Wardle, and J. D. Harvey, "Observation of non-phase-matched parametric amplification in resonant nonlinear optics," Phys. Rev. Lett. 89, 273901/1-4, doi:10.1103/PhysRevLett.89.273901 (2002). [CrossRef]
  23. F. Vanholsbeeck, P. Emplit, and S. Coen, "Complete experimental characterization of the influence of parametric four-wave mixing on stimulated Raman gain," Opt. Lett. 28, 1960-1962 (2003). [CrossRef] [PubMed]
  24. F. Biancalana, D. V. Skryabin, and P. St. J. Russell, "Four-wave mixing instabilities in photonic-crystal and tapered fibers," Phys. Rev. E 68, 046603, doi:10.1103/PhysRevE.68.046603 (2003). [CrossRef]
  25. J. Riishede, "Modelling photonic crystal fibres with the finite difference method," Ph.D. dissertation (Research Center COM, Technical University of Denmark, 2005).
  26. C. A. De Francisco, B. V. Borges, and M. A. Romero, "A semivectorial method for the modeling of photonic crystal fibers," Microwave Opt. Technol. Lett. 38, 418-421 (2003). [CrossRef]
  27. Overview of the BlazePhotonics nonlinear line, http://www.crystal-fibre.com/products/nonlinear.shtm(2005).
  28. O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, "Optimization of the split-step Fourier method in modeling optical-fiber communications systems," J. Lightwave Technol. 21, 61-68 (2003). [CrossRef]
  29. T. Schreiber, J. Limpert, H. Zellmer, A. Tünnermann, and K. P. Hansen, "High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78, doi:10.1016/j.optcom.2003.09.091 (2003). [CrossRef]
  30. K. P. Hansen, Crystal Fiber A/S (personal communication, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited