OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 8 — Aug. 1, 2006
  • pp: 1700–1707

Nanomanagement of dispersion, nonlinearity, and gain of photonic-crystal fibers: qualitative arguments of the Gaussian-mode theory and nonperturbative numerical analysis

Evgenii E. Serebryannikov and Aleksei M. Zheltikov  »View Author Affiliations


JOSA B, Vol. 23, Issue 8, pp. 1700-1707 (2006)
http://dx.doi.org/10.1364/JOSAB.23.001700


View Full Text Article

Enhanced HTML    Acrobat PDF (373 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Qualitative arguments of the Gaussian-mode theory and numerical solution of vectorial wave equations are used to demonstrate that arrays of submicrometer air holes can significantly modify the properties of guided modes in optical fibers, enabling a fine tuning of fiber dispersion, nonlinearity, and gain. Fiber dispersion nanomanagement solutions are shown to provide ultraflattened group-velocity dispersion profiles and control the fiber nonlinearity and gain.

© 2006 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Photonic Crystals

History
Original Manuscript: November 1, 2005
Revised Manuscript: February 1, 2006
Manuscript Accepted: February 20, 2006

Citation
Evgenii E. Serebryannikov and Aleksei M. Zheltikov, "Nanomanagement of dispersion, nonlinearity, and gain of photonic-crystal fibers: qualitative arguments of the Gaussian-mode theory and nonperturbative numerical analysis," J. Opt. Soc. Am. B 23, 1700-1707 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-8-1700


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  2. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic bandgap guidance in optical fibers," Science 282, 1476-1478 (1998). [CrossRef] [PubMed]
  3. P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  4. J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  5. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers (Kluwer Academic, 2003). [CrossRef]
  6. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003). [CrossRef] [PubMed]
  7. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000). [CrossRef]
  8. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Mann, and P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B 19, 2148-2155 (2002). [CrossRef]
  9. A.M.Zheltikov, ed., special issue on supercontinuum generation, Appl. Phys. B 77, 143-376 (2003).
  10. D. A. Akimov, E. E. Serebryannikov, A. M. Zheltikov, M. Schmitt, R. Maksimenka, W. Kiefer, K. V. Dukel'skii, V. S. Shevandin, and Yu. N. Kondrat'ev, "Efficient anti-Stokes generation through phase-matched four-wave mixing in higher-order modes of a microstructure fiber," Opt. Lett. 28, 1948-1950 (2003). [CrossRef] [PubMed]
  11. S. O. Konorov and A. M. Zheltikov, "Frequency conversion of subnanojoule femtosecond laser pulses in a microstructure fiber for photochromism initiation," Opt. Express 11, 2440-2445 (2003). [CrossRef] [PubMed]
  12. S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, "Cross-correlation frequency-resolved optical gating coherent anti-Stokes Raman scattering with frequency-converting photonic-crystal fibers," Phys. Rev. E 70, 057601 (2004). [CrossRef]
  13. H. Kano and H. Hamaguchi, "Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy," Opt. Lett. 28, 2360-2362 (2003). [CrossRef] [PubMed]
  14. S. O. Konorov, D. A. Akimov, A. A. Ivanov, M. V. Alfimov, A. V. Yakimanskii, and A. M. Zheltikov, "Probing resonant nonlinearities in organic materials using photonic-crystal fiber frequency converters," Chem. Phys. Lett. 405, 310-313 (2005). [CrossRef]
  15. H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, "Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source," Opt. Lett. 28, 1123-1125 (2003). [CrossRef] [PubMed]
  16. H. Kano and H. Hamaguchi, "Femtosecond coherent anti-Stokes Raman scattering spectroscopy using a supercontinuum generated from a photonic crystal fiber," Appl. Phys. Lett. 85, 4298-4300 (2004). [CrossRef]
  17. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13, 534-544 (2005). [CrossRef] [PubMed]
  18. C. Y. Teisset, N. Ishii, T. Fuji, T. Metzger, S. Köhler, R. Holzwarth, A. Baltuska, A. M. Zheltikov, and F. Krausz, "Soliton-based pump-seed synchronization for few-cycle OPCPA," Opt. Express 13, 6550-6557 (2005). [CrossRef] [PubMed]
  19. E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton self-frequency shift of 6-fs pulses in photonic-crystal fibers," Appl. Phys. B 81, 585-588 (2005). [CrossRef]
  20. I. Hartl, X. D. Li, C. Chudoba, R. K. Rhanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001). [CrossRef]
  21. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000). [CrossRef] [PubMed]
  22. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000). [CrossRef] [PubMed]
  23. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000). [CrossRef] [PubMed]
  24. Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature (London) 416, 233-237 (2002). [CrossRef]
  25. T. A. Birks, J. C. Knight, and P. S. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  26. A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, "Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers," Appl. Phys. B 73, 181-184 (2001). [CrossRef]
  27. S. O. Konorov, E. E. Serebryannikov, A. M. Zheltikov, P. Zhou, A. P. Tarasevitch, and D. von der Linde, "Generation of femtosecond anti-Stokes pulses through phase-matched parametric four-wave mixing in a photonic crystal fiber," Opt. Lett. 29, 1545-1547 (2004). [CrossRef] [PubMed]
  28. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, "Large mode area photonic crystal fiber," Electron. Lett. 13, 1347-1348 (1998). [CrossRef]
  29. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett. 25, 1325-1327 (2000). [CrossRef]
  30. M. J. Steel and J. R. M. Osgood, "Elliptical-hole photonic crystal fibers," Opt. Lett. 26, 229-231 (2001). [CrossRef]
  31. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic bandgap guidance of light in air," Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  32. S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, and A. M. Zheltikov, "Guided modes of hollow photonic-crystal fibers," JETP Lett. 76, 341-345 (2002). [CrossRef]
  33. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002). [CrossRef] [PubMed]
  34. A. M. Zheltikov, "Nonlinear optics of microstructure fibers," Phys. Usp. 47, 69-98 (2004). [CrossRef]
  35. A. B. Fedotov, A. N. Naumov, I. Bugar, D. Chorvat, Jr., D. A. Sidorov-Biryukov, D. Chorvat, and A. M. Zheltikov, "Supercontinuum generation in photonic-molecule modes of microstructure fibers," IEEE J. Sel. Top. Quantum Electron. 8, 665-674 (2002). [CrossRef]
  36. A. Ferrando, E. Silvestre, P. Andres, J. J. Miret, and M. V. Andres, "Designing the properties of dispersion-flattened photonic crystal fibers," Opt. Express 9, 687-697 (2001). [CrossRef] [PubMed]
  37. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, "Nearly zero ultraflattened dispersion in photonic crystal fibers," Opt. Lett. 25, 790-792 (2000). [CrossRef]
  38. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic, 1983).
  39. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennet, "Modeling large air fraction holey optical fibers," J. Lightwave Technol. 18, 50-56 (2000). [CrossRef]
  40. S. O. Konorov, D. A. Akimov, A. A. Ivanov, M. V. Alfimov, A. B. Fedotov, D. A. Sidorov-Biryukov, L. A. Mel'nikov, A. V. Shcherbakov, I. Bugar, D. Chorvat, Jr., F. Uherek, D. Chorvat, and A. M. Zheltikov, "Anti-Stokes generation in guided modes of photonic-crystal fibers modified with an array of nanoholes," Laser Phys. Lett. 1, 402-405 (2004). [CrossRef]
  41. K. Saitoh, N. Florous, and M. Koshiba, "Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses," Opt. Express 13, 8365-8371 (2005). [CrossRef] [PubMed]
  42. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tünnermann, "All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber," Opt. Express 11, 3332-3337 (2003). [CrossRef] [PubMed]
  43. C. J. S. de Matos, S. V. Popov, A. B. Rulkov, J. R. Taylor, J. Broeng, T. P. Hansen, and V. P. Gapontsev, "All-fiber format compression of frequency chirped pulses in air-guiding photonic crystal fibers," Phys. Rev. Lett. 93, 103901 (2004). [CrossRef] [PubMed]
  44. H. Lim, F. Ö. Ilday, and F. W. Wise, "Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control," Opt. Express 10, 1497-1502 (2002). [PubMed]
  45. T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi, "Supercontinuum generation at 1.55 m in a dispersion-flattened polarization-maintaining photonic crystal fiber," Opt. Express 11, 1537-1540 (2003). [CrossRef] [PubMed]
  46. T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, "Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber," Opt. Lett. 28, 1951-1953 (2003). [CrossRef] [PubMed]
  47. J. Hecht, The Laser Guidebook (McGraw-Hill, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited