OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 9 — Sep. 1, 2006
  • pp: 1776–1784

Gaussian pulse dynamics in gain media with Kerr nonlinearity

Christian Jirauschek and Franz X. Kärtner  »View Author Affiliations

JOSA B, Vol. 23, Issue 9, pp. 1776-1784 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (213 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using the Kantorovitch method in combination with a Gaussian ansatz, we derive the equations of motion for spatial, temporal, and spatiotemporal optical propagation in a dispersive Kerr medium with a general transverse and spectral gain profile. By rewriting the variational equations as differential equations for the temporal and spatial Gaussian q parameters, optical A B C D matrices for self-focusing and self-phase modulation, a general transverse gain profile, and nonparabolic spectral gain filtering are obtained. Further effects can easily be taken into account by adding the corresponding A B C D matrices. Applications include the temporal pulse dynamics in gain fibers and the beam propagation or spatiotemporal pulse evolution in bulk gain media. As an example, the steady-state spatiotemporal Gaussian pulse dynamics in a Kerr-lens mode-locked laser resonator is studied.

© 2006 Optical Society of America

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.3270) Nonlinear optics : Kerr effect
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 17, 2006
Manuscript Accepted: March 9, 2006

Christian Jirauschek and Franz X. Kärtner, "Gaussian pulse dynamics in gain media with Kerr nonlinearity," J. Opt. Soc. Am. B 23, 1776-1784 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Manousakis, S. Droulias, P. Papagiannis, and K. Hizanidis, "Propagation of chirped solitary pulses in optical transmission lines: perturbed variational approach," Opt. Commun. 213, 293-299 (2002). [CrossRef]
  2. I. P. Christov and V. D. Stoev, "Kerr-lens mode-locked laser model: role of space-time effects," J. Opt. Soc. Am. B 15, 1960-1966 (1998). [CrossRef]
  3. V. P. Kalosha, M. Müller, J. Herrmann, and S. Gatz, "Spatiotemporal model of femtosecond pulse generation in Kerr-lens mode-locked solid-state lasers," J. Opt. Soc. Am. B 15, 535-550 (1998). [CrossRef]
  4. C. Jirauschek, F. X. Kärtner, and U. Morgner, "Spatiotemporal Gaussian pulse dynamics in Kerr-lens mode-locked lasers," J. Opt. Soc. Am. B 20, 1356-1368 (2003). [CrossRef]
  5. D. Anderson and M. Bonnedal, "Variational approach to nonlinear self-focusing of Gaussian laser beams," Phys. Fluids 22, 105-109 (1979). [CrossRef]
  6. D. Anderson, M. Bonnedal, and M. Lisak, "Self-trapped cylindrical laser beams," Phys. Fluids 22, 1838-1840 (1979). [CrossRef]
  7. D. Anderson, "Variational approach to nonlinear pulse propagation in optical fibers," Phys. Rev. A 27, 3135-3145 (1983). [CrossRef]
  8. M. Desaix, D. Anderson, and M. Lisak, "Variational approach to collapse of optical pulses," J. Opt. Soc. Am. B 8, 2082-2086 (1991). [CrossRef]
  9. C. Jirauschek, U. Morgner, and F. X. Kärtner, "Variational analysis of spatio-temporal pulse dynamics in dispersive Kerr media," J. Opt. Soc. Am. B 19, 1716-1721 (2002). [CrossRef]
  10. D. J. Kaup and B. A. Malomed, "The variational principle for nonlinear waves in dissipative systems," Physica D 87, 155-159 (1995). [CrossRef]
  11. F. Riewe, "Nonconservative Lagrangian and Hamiltonian mechanics," Phys. Rev. E 53, 1890-1899 (1996). [CrossRef]
  12. S. C. Cerda, S. B. Cavalcanti, and J. M. Hickmann, "A variational approach of nonlinear dissipative pulse propagation," Eur. Phys. J. D 1, 313-316 (1998). [CrossRef]
  13. D. Anderson, F. Cattani, and M. Lisak, "On the Pereira-Stenflo solitons," Phys. Scr. T82, 32-35 (1999). [CrossRef]
  14. N. Aközbek, C. M. Bowden, A. Talebpour, and S. L. Chin, "Femtosecond pulse propagation in air: variational analysis," Phys. Rev. E 61, 4540-4549 (2000). [CrossRef]
  15. A. E. Siegman, Lasers (University Science, 1986).
  16. S. P. Dijaili, A. Dienes, and J. S. Smith, "ABCD matrices for dispersive pulse propagation," IEEE J. Quantum Electron. 26, 1158-1164 (1990). [CrossRef]
  17. Y. Chen and H. A. Haus, "Dispersion-managed solitons in the net positive dispersion regime," J. Opt. Soc. Am. B 16, 24-30 (1999). [CrossRef]
  18. Y. Chen, F. X. Kärtner, U. Morgner, S. H. Cho, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, "Dispersion-managed mode locking," J. Opt. Soc. Am. B 16, 1999-2004 (1999). [CrossRef]
  19. A. Penzkofer, M. Wittmann, M. Lorenz, E. Siegert, and S. MacNamara, "Kerr lens effects in a folded-cavity four-mirror linear resonator," Opt. Quantum Electron. 28, 423-442 (1996). [CrossRef]
  20. V. Magni, G. Cerullo, and S. De Silvestri, "ABCD matrix analysis of propagation of Gaussian beams through Kerr media," Opt. Commun. 96, 348-355 (1993). [CrossRef]
  21. M. A. Larotonda and A. A. Hnilo, "Short laser pulse parameters in a nonlinear medium: different approximations of the ray-pulse matrix," Opt. Commun. 183, 207-213 (2000). [CrossRef]
  22. A. G. Kostenbauder, "Ray-pulse matrices: a rational treatment for dispersive optical systems," IEEE J. Quantum Electron. 26, 1148-1157 (1990). [CrossRef]
  23. J. L. A. Chilla and O. E. Martínez, "Spatial-temporal analysis of the self-mode-locked Ti:sapphire laser," J. Opt. Soc. Am. B 10, 638-643 (1993). [CrossRef]
  24. M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura, "Time-domain ABCD matrix formalism for laser mode-locking and optical pulse transmission," IEEE J. Quantum Electron. 34, 1075-1081 (1998). [CrossRef]
  25. B. H. Kolner and M. Nazarathy, "Temporal imaging with a time lens," Opt. Lett. 14, 630-632 (1989). [CrossRef] [PubMed]
  26. E. J. Grace, G. H. C. New, and P. M. W. French, "Simple ABCD matrix treatment for transversely varying saturable gain," Opt. Lett. 26, 1776-1778 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited