OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 9 — Sep. 1, 2006
  • pp: 1801–1814

Explicit computation of gradient and nongradient contributions to optical forces in the discrete-dipole approximation

Vance Wong and Mark A. Ratner  »View Author Affiliations


JOSA B, Vol. 23, Issue 9, pp. 1801-1814 (2006)
http://dx.doi.org/10.1364/JOSAB.23.001801


View Full Text Article

Enhanced HTML    Acrobat PDF (2476 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an efficient, discrete-dipole-approximation-based method for computing gradient and nongradient contributions to the optically induced force on neutral, polarizable particles in a field. We compare numerical data from this method with those generated using previously devised computational approaches for computing total forces. The agreement is generally adequate, and rounding error is the likely cause for differences among results obtained from the three methods. For both one- and two-sphere targets, nongradient forces generally make a nonnegligible contribution. For spheres, the gradient force often nearly cancels a component of the nongradient force, so that the radiation-pressure component is approximately equal to the net force. These results are contrary to the commonly assumed dominance of the gradient force for nanometer-sized particles.

© 2006 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(240.0240) Optics at surfaces : Optics at surfaces
(260.3910) Physical optics : Metal optics

ToC Category:
Physical Optics

History
Original Manuscript: October 7, 2005
Revised Manuscript: December 8, 2005
Manuscript Accepted: April 18, 2006

Citation
Vance Wong and Mark A. Ratner, "Explicit computation of gradient and nongradient contributions to optical forces in the discrete-dipole approximation," J. Opt. Soc. Am. B 23, 1801-1814 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-9-1801


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin and J. M. Dziedzic, "Optical levitation by radiation pressure," Appl. Phys. Lett. 19, 283-285 (1971). [CrossRef]
  2. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  3. E. J. Bjerneld, K. V. G. K. Murty, J. Prikulis, and M. Kall, "Laser-induced growth of Ag nanoparticles from aqueous solutions," ChemPhysChem 3, 116-119 (2002). [CrossRef] [PubMed]
  4. P. Royer, D. Barchiesi, G. Lerondel, and R. Bachelot, "Near-field optical patterning and structuring based on local-field enhancement at the extremity of a metal tip," Philos. Trans. R. Soc. London Ser. A 362, 821-842 (2004). [CrossRef]
  5. A. Lachish-Zalait, D. Zbaida, E. Klein, and M. Elbaum, "Direct surface patterning from solutions: localized microchemistry using a focused laser," Adv. Funct. Mater. 11, 218-223 (2001). [CrossRef]
  6. S. B. Smith, Y. J. Cui, and C. Bustamante, "Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules," Science 271, 795-799 (1996). [CrossRef] [PubMed]
  7. K. Visscher, M. J. Schnitzer, and S. M. Block, "Single kinesin molecules studied with a molecular force clamp," Nature 400, 184-189 (1999). [CrossRef] [PubMed]
  8. T. T. Perkins, S. R. Quake, D. E. Smith, and S. Chu, "Relaxation of a single DNA molecule observed by optical microscopy," Science 264, 822-826 (1994). [CrossRef] [PubMed]
  9. M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003). [CrossRef] [PubMed]
  10. M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. C. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, "Microfluidic sorting of mammalian cells by optical force switching," Nat. Biotechnol. 23, 83-87 (2005). [CrossRef]
  11. S. C. Grover, A. G. Skirtach, R. C. Gauthier, and C. P. Grover, "Automated single-cell sorting system based on optical trapping," J. Biomed. Opt. 6, 14-22 (2001). [CrossRef] [PubMed]
  12. J. R. Arias-Gonzalez, M. Nieto-Vesperinas, and M. Lester, "Modeling photonic force microscopy with metallic particles under plasmon eigenmode excitation," Phys. Rev. B 65, 115402 (2002). [CrossRef]
  13. T. Sugiura, "Laser trapping of a metallic probe for near field microscopy," Top. Appl. Phys. 81, 143-161 (2001). [CrossRef]
  14. L. Malmqvist and H. M. Hertz, "Trapped particle optical microscopy," Opt. Commun. 94, 19-24 (1992). [CrossRef]
  15. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Photonic force spectroscopy on metallic and absorbing nanoparticles," Phys. Rev. B 71, 045425 (2005). [CrossRef]
  16. B. T. Draine and J. C. Weingartner, "Radiative torques on interstellar grains II. Grain alignment," Astrophys. J. 480, 633-646 (1997). [CrossRef]
  17. C. Dominik and A. G. G. M. Tielens, "The physics of dust coagulation and the structure of dust aggregates in space," Astrophys. J. 480, 647-673 (1997). [CrossRef]
  18. A. J. Hallock, P. L. Redmond, and L. E. Brus, "Optical forces between metallic particles," Proc. Natl. Acad. Sci. U.S.A. 102, 1280-1284 (2005). [CrossRef] [PubMed]
  19. R. Jin, Y. C. Cao, E. Hao, G. S. Metraux, G. C. Schatz, and C. A. Mirkin, "Controlling anisotropic nanoparticle growth through plasmon excitation," Nature 425, 487-490 (2003). [CrossRef] [PubMed]
  20. M. Maillard, P. Huang, and L. Brus, "Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+]," Nano Lett. 3, 1611-1615 (2003). [CrossRef]
  21. A. Callegari, D. Tonti, and M. Chergui, "Photochemically grown silver nanoparticles with wavelength-controlled size and shape," Nano Lett. 3, 1565-1568 (2003). [CrossRef]
  22. R. Sigel, G. Fytas, N. Vainos, S. Pispas, and N. Hadjichristidis, "Pattern formation in homogeneous polymer solutions induced by a continuous-wave visible laser," Science 297, 67-69 (2002). [CrossRef] [PubMed]
  23. A. Ehrlicher, T. Betz, B. Stuhrmann, D. Koch, V. Milner, M. G. Raizen, and J. Kas, "Guiding neuronal growth with light," Proc. Natl. Acad. Sci. U.S.A. 99, 16024-16028 (2002). [CrossRef] [PubMed]
  24. P. C. Chaumet and M. Nieto-Vesperinas, "Optical binding of particles with or without the presence of a flat dielectric surface," Phys. Rev. B 64, 035422 (2001). [CrossRef]
  25. L. Novotny, X. Bian, and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997). [CrossRef]
  26. V. Wong and M. A. Ratner, "On the size dependence of gradient and non-gradient optical forces in silver nanoparticles" (submitted to J. Opt. Soc. Am. B).
  27. A. G. Hoekstra, M. Frijlink, L. B. F. M. Waters, and P. M. A. Sloot, "Radiation forces in the discrete-dipole approximation," J. Opt. Soc. Am. A 18, 1944-1953 (2001). [CrossRef]
  28. P. C. Chaumet and M. Nieto-Vesperinas, "Time-averaged total force on a dipolar sphere in an electromagnetic field," Opt. Lett. 25, 1065-1067 (2000). [CrossRef]
  29. F. J. Garcia de Abajo, "Electromagnetic forces and torques in nanoparticles irradiated by plane waves," J. Quant. Spectrosc. Radiat. Transf. 89, 3-9 (2004). [CrossRef]
  30. T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, and A. I. Bishop, "Numerical modelling of optical trapping," Comput. Phys. Commun. 142, 468-471 (2001). [CrossRef]
  31. B. T. Draine, "The discrete-dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333, 848-872 (1988). [CrossRef]
  32. B. T. Draine and J. C. Weingartner, "Radiative torques on interstellar grains. I. Superthermal spin-up," Astrophys. J. 470, 551-565 (1996). [CrossRef]
  33. S. Stenholm, "The semiclassical theory of laser cooling," Rev. Mod. Phys. 58, 699-739 (1986). [CrossRef]
  34. L. Novotny, "Forces in optical near-fields," Top. Appl. Phys. 81, 123-141 (2001). [CrossRef]
  35. J. R. Arias-Gonzalez and M. Nieto-Vesperinas, "Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions," J. Opt. Soc. Am. A 20, 1201-1209 (2003). [CrossRef]
  36. M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, "Near-field photonic forces," Philos. Trans. R. Soc. London Ser. A 362, 719-737 (2004). [CrossRef]
  37. G. E. Hay, Vector and Tensor Analysis (Dover, 1953).
  38. V. Wong and M. A. Ratner, "Gradient and nongradient contributions to plasmon enhanced optical forces on silver nanoparticles," Phys. Rev. B 73, 075416 (2006). [CrossRef]
  39. A. Ashkin and J. P. Gordon, "Stability of radiation-pressure particle traps: an optical Earnshaw theorem," Opt. Lett. 8, 511-513 (1983). [CrossRef] [PubMed]
  40. B. T. Draine and P. J. Flatau, "User Guide to the Discrete Dipole Approximation code DDSCAT 6.0" arxiv.org e-print archive, astro-ph/0300969, 2003, http://arxiv.org/abs/astro-ph/0300969.
  41. W. A. Kraus and G. C. Schatz, "Plasmon resonance broadening in small metal particles," J. Chem. Phys. 79, 6130-6139 (1983). [CrossRef]
  42. R. Fuchs and F. Claro, "Multipolar response of small metallic spheres: nonlocal theory," Phys. Rev. B 35, 3722-3727 (1987). [CrossRef]
  43. S. D. Druger and B. V. Bronk, "Internal and scattered electric fields in the discrete dipole approximation," J. Opt. Soc. Am. B 16, 2239-2246 (1999). [CrossRef]
  44. A. Rahmani, P. C. Chaumet, and G. W. Bryant, "On the importance of local-field corrections for polarizable particles on a finite lattice: application to the discrete dipole approximation," Astrophys. J. 607, 873-878 (2004). [CrossRef]
  45. M. J. Collinge and B. T. Draine, "Discrete-dipole approximation with polarizabilities that account for both finite wavelength and target geometry," J. Opt. Soc. Am. A 21, 2023-2028 (2004). [CrossRef]
  46. P. C. Chaumet and M. Nieto-Vesperinas, "Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate," Phys. Rev. B 61, 14119-14127 (2000). [CrossRef]
  47. J. D. Jackson, Classical Electrodynamics (Wiley, 1975).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited