OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 9 — Sep. 1, 2006
  • pp: 1843–1851

Modeling of a biased liquid-crystal capillary waveguide

Jesper Lægsgaard  »View Author Affiliations

JOSA B, Vol. 23, Issue 9, pp. 1843-1851 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (356 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A numerical scheme for modeling the waveguiding properties of a biased capillary tube infiltrated with nematic liquid crystal is presented. The structure of the liquid crystal under bias is determined by solving the Poisson equation for the electrostatic field and minimizing the elastic free energy of the liquid crystal in a self-consistency procedure. The resulting dielectric tensor is calculated, and the guided modes of the capillary waveguide are found. Results are reported for E7 liquid crystal in a single capillary as well as for a periodic geometry. The influence of the surrounding dielectric structure upon the liquid-crystal structure of an individual capillary tube is found to be minor. The photonic density of states of a square array of biased capillaries is calculated and is found to be highly tunable with respect to both the spectral positions of peaks and bandgaps as well as the widths of the photonic bands.

© 2006 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(160.3710) Materials : Liquid crystals

ToC Category:

Original Manuscript: January 9, 2006
Revised Manuscript: March 14, 2006
Manuscript Accepted: April 6, 2006

Jesper Lægsgaard, "Modeling of a biased liquid-crystal capillary waveguide," J. Opt. Soc. Am. B 23, 1843-1851 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Lin, P. Palffy-Muhoray, and M. A. Lee, "Liquid crystalline cores for optical fibers," Mol. Cryst. Liq. Cryst. 204, 189-200 (1991). [CrossRef]
  2. H. Lin and P. Palffy-Muhoray, "TE and TM modes in a cylindrical liquid-crystal waveguide," Opt. Lett. 17, 722-724 (1992). [CrossRef] [PubMed]
  3. H. Lin and P. Palffy-Muhoray, "Propagation of TM modes in a nonlinear liquid-crystal waveguide," Opt. Lett. 19, 436-438 (1994). [CrossRef] [PubMed]
  4. J. A. Reyes and R. F. Rodriguez, "Guiding of optical fields in a liquid crystal cylindrical fiber," Opt. Commun. 134, 349-361 (1997). [CrossRef]
  5. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003). [CrossRef] [PubMed]
  6. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12, 5857-5871 (2004). [CrossRef] [PubMed]
  7. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005). [CrossRef]
  8. L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 7483-7496 (2005). [CrossRef] [PubMed]
  9. F. Du, Y.-Q. Lu, and S.-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004). [CrossRef]
  10. I. C. Khoo, H. Li, P. G. LoPresti, and Y. Liang, "Observation of optical limiting and backscattering of nanosecond laser pulses in liquid-crystal fibers," Opt. Lett. 19, 530-532 (1994). [CrossRef] [PubMed]
  11. P. G. de Gennes, The Physics of Liquid Crystals (Clarendon, 1974).
  12. Y. Saad and M. H. Schultz, "GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. 7, 856-869 (1986).
  13. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  14. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 48, 8434-8437 (1993). [CrossRef]
  15. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Erratum: accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 55, 15942 (1997). [CrossRef]
  16. J. Li and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896-901 (2004). [CrossRef]
  17. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).
  18. F. Z. Yang, H. F. Cheng, H. J. Gao, and J. R. Sambles, "Technique for characterizing azimuthal anchoring of twisted nematic liquid crystals using half-leaky guided modes," J. Opt. Soc. Am. B 18, 994-1002 (2001). [CrossRef]
  19. T. T. Alkeskjold, "Optical devices based on liquid crystal photonic bandgap fibers," Ph.D. dissertation (Technical University of Denmark, Lyngby, 2005).
  20. O. Jepsen, J. Madsen, and O. K. Andersen, "Band structure of thin films by the linear augmented-plane-wave method," Phys. Rev. B 18, 605-615 (1978). [CrossRef]
  21. J. Lægsgaard, "Gap formation and guided modes in photonic bandgap fibres with high-index rods," J. Opt. 6, 798-804 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited