OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 9 — Sep. 1, 2006
  • pp: 1911–1919

Spatiotemporal solitons in birefringent media near the zero-dispersion point

E. P. Fitrakis, H. E. Nistazakis, B. A. Malomed, D. J. Frantzeskakis, and P. G. Kevrekidis  »View Author Affiliations


JOSA B, Vol. 23, Issue 9, pp. 1911-1919 (2006)
http://dx.doi.org/10.1364/JOSAB.23.001911


View Full Text Article

Enhanced HTML    Acrobat PDF (342 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new species of spatiotemporal solitons (STSs, alias light bullets) that may be formed through the interaction of two waves with different polarizations in a birefringent Kerr medium near the point at which the second-order group-velocity dispersion (GVD) vanishes in the presence of a uniform cw background in one component. The analysis is based on an asymptotic reduction of the two cross-phase, modulation-coupled ( 2 + 1 ) -dimensional nonlinear Schrödinger equations, incorporating the third-order GVD to the Davey–Stewartson (DS) systems of type I or II for the self-defocusing and focusing Kerr nonlinearity, respectively. The STSs are then predicted following the pattern of the dromion solutions of the DS-I system and lump solitons of the DS-II system. Strictly speaking, the solitons are unstable, but they are shown to be stable objects on experimentally relevant scales of the propagation distance.

© 2006 Optical Society of America

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 3, 2006
Revised Manuscript: April 6, 2006
Manuscript Accepted: April 7, 2006

Citation
E. P. Fitrakis, H. E. Nistazakis, B. A. Malomed, D. J. Frantzeskakis, and P. G. Kevrekidis, "Spatiotemporal solitons in birefringent media near the zero-dispersion point," J. Opt. Soc. Am. B 23, 1911-1919 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-9-1911


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Silberberg, "Collapse of optical pulses," Opt. Lett. 15, 1282-1284 (1990).
  2. R. H. Enns, D. E. Edmundson, S. S. Rangnekar, and A. E. Kaplan, "Optical switching between bistable soliton states--a theoretical review," Opt. Quantum Electron. 24, S1295-S1314 (1992). [CrossRef]
  3. R. McLeod, K. Wagner, and S. Blair, "(3+1)-dimensional optical soliton dragging logic," Phys. Rev. A 52, 3254-3278 (1995). [CrossRef]
  4. D. E. Edmundson and R. H. Enns, "Particlelike nature of colliding three-dimensional optical solitons," Phys. Rev. A 51, 2491-2498 (1995). [CrossRef]
  5. D. E. Edmundson, "Unstable higher modes of a three-dimensional nonlinear Schrodinger equation," Phys. Rev. E 55, 7636-7644 (1997). [CrossRef]
  6. K. Hayata and M. Koshiba, "Multidimensional solitons in quadratic nonlinear media," Phys. Rev. Lett. 71, 3275-3278 (1993). [CrossRef]
  7. B. A. Malomed, P. Drummond, H. He, A. Berntson, D. Anderson, and M. Lisak, "Spatiotemporal solitons in multidimensional optical media with a quadratic nonlinearity," Phys. Rev. E 56, 4725-4735 (1997). [CrossRef]
  8. D. V. Skryabin and W. J. Firth, "Generation and stability of optical bullets in quadratic nonlinear media," Opt. Commun. 148, 79-84 (1998). [CrossRef]
  9. D. Mihalache, D. Mazilu, B. A. Malomed, and L. Torner, "Asymmetric spatio-temporal optical solitons in media with quadratic nonlinearity," Opt. Commun. 152, 365-370 (1998). [CrossRef]
  10. I. N. Towers, B. A. Malomed, and F. W. Wise, "Light bullets in quadratic media with normal dispersion at the second harmonic," Phys. Rev. Lett. 90, 123902 (2003). [CrossRef]
  11. H. Leblond, "Bidimensional optical solitons in a quadratic medium," J. Phys. A 31, 5129-5143 (1998). [CrossRef]
  12. M. L. Quiroga-Teixeiro, A. Berntson, and H. Michinel, "Internal dynamics of nonlinear beams in their ground states: short- and long-lived excitation," J. Opt. Soc. Am. B 16, 1697-1704 (1999).
  13. D. Mihalache, D. Mazilu, L.-C. Crasovan, I. Towers, A. V. Buryak, B. A. Malomed, L. Torner, J. P. Torres, and F. Lederer, "Stable spinning optical solitons in three dimensions," Phys. Rev. Lett. 88, 073902 (2002). [CrossRef]
  14. D. Mihalache, D. Mazilu, I. Towers, B. A. Malomed, and F. Lederer, "Stable spatiotemporal spinning solitons in a bimodal cubic-quintic medium," Phys. Rev. E 67, 056608 (2003). [CrossRef]
  15. A. B. Blagoeva, S. G. Dinev, A. A. Dreischuh, and A. Naidenov, "Light bullets formation in a bulk media," IEEE J. Quantum Electron. 27, 2060-2065 (1991). [CrossRef]
  16. Y. Chen and J. Atai, "Dark optical bullets in light self-trapping," Opt. Lett. 20, 133-135 (1995).
  17. D. J. Frantzeskakis, K. Hizanidis, B. A. Malomed, and C. Polymilis, "Stable anti-dark light bullets supported by the third-order dispersion," Phys. Lett. A 248, 203-207 (1998). [CrossRef]
  18. H. E. Nistazakis, D. J. Frantzeskakis, and B. A. Malomed, "Collisions between spatiotemporal solitons of different dimensionality in a planar waveguide," Phys. Rev. E 64, 026604 (2001). [CrossRef]
  19. M. Blaauboer, B. A. Malomed, and G. Kurizki, "Spatiotemporally localized multidimensional solitons in self-induced transparency media," Phys. Rev. Lett. 84, 1906-1909 (2000). [CrossRef]
  20. M. Blaauboer, G. Kurizki, and B. A. Malomed, "Spatiotemporally localized solitons in resonantly absorbing Bragg reflectors," Phys. Rev. E 62, R57-R59 (2000). [CrossRef]
  21. I. Towers and B. A. Malomed, "Stable (2+1)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity," J. Opt. Soc. Am. B 19, 537-543 (2002).
  22. M. Matuszewski, M. Trippenbach, B. A. Malomed, E. Infeld, and M. Skorupski, "Two-dimensional dispersion-managed light bullets in Kerr media," Phys. Rev. E 70, 016603 (2004). [CrossRef]
  23. X. Liu, L. J. Qian, and F. W. Wise, "Generation of optical spatiotemporal solitons," Phys. Rev. Lett. 82, 4631-4634 (1999). [CrossRef]
  24. X. Liu, K. Beckwitt, and F. Wise, "Two-dimensional optical spatiotemporal solitons in quadratic media," Phys. Rev. E 62, 1328-1340 (2000). [CrossRef]
  25. H. S. Eisenberg, R. Morandotti, Y. Silberberg, S. Bar-Ad, D. Ross, and J. S. Aitchison, "Kerr spatiotemporal self-focusing in a planar glass waveguide," Phys. Rev. Lett. 87, 043902 (2001). [CrossRef]
  26. G. Gottwald, R. Grimshaw, and B. A. Malomed, "Stable two-dimensional parametric solitons in fluid systems," Phys. Lett. A 248, 208-218 (1998). [CrossRef]
  27. H. Saito and M. Ueda, "Dynamically stabilized bright solitons in a two-dimensional Bose-Einstein condensate," Phys. Rev. Lett. 90, 040403 (2003). [CrossRef]
  28. F. Kh. Abdullaev, J. G. Caputo, R. A. Kraenkel, and B. A. Malomed, "Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length," Phys. Rev. A 67, 013605 (2003). [CrossRef]
  29. G. D. Montesinos, V. M. Pérez-García, and P. J. Torres, "Stabilization of solitons of the multidimensional nonlinear Schrodinger equation: matter-wave breathers," Physica D 191, 193-210 (2004). [CrossRef]
  30. B. B. Baizakov, B. A. Malomed, and M. Salerno, "Multidimensional solitons in a low-dimensional periodic potential," Phys. Rev. A 70, 053613 (2004). [CrossRef]
  31. D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L. C. Crasovan, and L. Torner, "Stable three-dimensional spatiotemporal solitons in a two-dimensional photonic lattice," Phys. Rev. E 70, 055603 (2004). [CrossRef]
  32. P. G. Kevrekidis, G. Theocharis, D. J. Frantzeskakis, and B. A. Malomed, "Feshbach resonance management for Bose-Einstein condensates," Phys. Rev. Lett. 90, 230401 (2003). [CrossRef]
  33. G. D. Montesinos, V. M. Pérez-García, and H. Michinel, Stabilized two-dimensional vector solitons," Phys. Rev. Lett. 92, 133901 (2004). [CrossRef]
  34. M. Trippenbach, M. Matuszewski, and B. A. Malomed, Stabilization of three-dimensional matter-waves solitons in an optical lattice," Europhys. Lett. 70, 8-14 (2005). [CrossRef]
  35. M. Matuszewski, E. Infeld, B. A. Malomed, and M. Trippenbach, Fully three dimensional breather solitons can be created using Feshbach resonances," Phys. Rev. Lett. 95, 050403 (2005). [CrossRef]
  36. B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, Spatiotemporal optical solitons," J. Opt. 7, R53-R72 (2005).
  37. Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).
  38. B. A. Malomed, Soliton Management in Periodic Systems (Springer, 2006).
  39. G. P. Agrawal, Nonlinear Fiber Optics (Academic,1995).
  40. A. Davey and K. Stewartson, "3-dimensional packets of surface-waves," Proc. R. Soc. London, Ser. A 338, 101-110 (1974).
  41. M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge U. Press, 1991).
  42. M. Boiti, J. J. Leon, L. Martina, and F. Pempinelli, "Scattering of localized solitons in the plane," Phys. Lett. A 132, 432-439 (1988). [CrossRef]
  43. A. S. Fokas and P. M. Santini, "Coherent structures in multidimensions," Phys. Rev. Lett. 63, 1329-1333 (1989). [CrossRef]
  44. A. S. Fokas and P. M. Santini, "Dromions and a boundary-value problem for the Davey-Stewartson-1 equation," Physica D 44, 99-130 (1990). [CrossRef]
  45. V. A. Arkadiev, A. K. Pogrebkov, and M. C. Polivanov, "Inverse scattering transform method and soliton-solutions for Davey-Stewartson-II equation," Physica D 36, 189-197 (1989). [CrossRef]
  46. P. Di Trapani, W. Chinaglia, S. Minardi, A. Piskarkas, and G. Valiulis, "Observation of quadratic optical vortex solitons," Phys. Rev. Lett. 84, 3843-3846 (2000). [CrossRef]
  47. K. Beckwitt, Y. F. Chen, F. W. Wise, and B. A. Malomed, "Temporal solitons in quadratic nonlinear media with opposite group-velocity dispersions at the fundamental and second harmonics," Phys. Rev. E 68, 057601 (2003). [CrossRef]
  48. V. Djordjevic and L. Redekopp, "2-dimensional packets of capillary-gravity waves," J. Fluid Mech. 79, 703-714 (1977). [CrossRef]
  49. Yu. S. Kivshar, "Stable vector solitons composed of bright and dark pulses," Opt. Lett. 17, 1322-1325 (1992).
  50. R. E. Kates and D. J. Kaup, "2-dimensional nonlinear Schrodinger-equations and their properties," Physica D 75, 458-470 (1994).
  51. D. J. Benney and G. J. Roskes, "Wave instabilities," Stud. Appl. Math. 48, 377-385 (1969).
  52. M. J. Ablowitz, G. Biondini, and S. Blair, "Nonlinear Schrodinger equations with mean terms in nonresonant multidimensional quadratic materials," Phys. Rev. E 63, 046605 (2001). [CrossRef]
  53. G. Huang, L. Deng, and C. Hang, "Davey-Stewartson description of two-dimensional nonlinear excitations in Bose-Einstein condensates," Phys. Rev. E 72, 036621 (2005). [CrossRef]
  54. D. B. Khismatullin and I. Sh. Akhatov, "Sound-ultrasound interaction in bubbly fluids: theory and possible applications," Phys. Fluids 13, 3582-3598 (2001). [CrossRef]
  55. H. Leblond, "Electromagnetic waves in ferromagnets: a Davey-Stewartson-type model," J. Phys. A 32, 7907-7932 (1999). [CrossRef]
  56. G. Huang, V. V. Konotop, H. W. Tam, and B. Hu, "Nonlinear modulation of multidimensional lattice waves," Phys. Rev. E 64, 056619 (2001). [CrossRef]
  57. D. Anker and N. C. Freeman, "Soliton solutions of Davey-Stewartson equation for long waves," Proc. R. Soc. London, Ser. A 360, 529-540 (1978).
  58. J. Satsuma and M. J. Ablowitz, "2-dimensional lumps in non-linear dispersive systems," J. Math. Phys. 20, 1496-1503 (1979). [CrossRef]
  59. A. Nakamura, "Explode-decay mode lump solitons of a two-dimensional non-linear Schrodinger-equation," Phys. Lett. A 88, 55-56 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited