OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 9 — Sep. 1, 2006
  • pp: 1925–1933

Dispersive effects on optical information storage in Bose–Einstein condensates with ultraslow short pulses

Devrim Tarhan, Alphan Sennaroglu, and Özgür E. Müstecaplıoğlu  »View Author Affiliations


JOSA B, Vol. 23, Issue 9, pp. 1925-1933 (2006)
http://dx.doi.org/10.1364/JOSAB.23.001925


View Full Text Article

Enhanced HTML    Acrobat PDF (386 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the potential of atomic Bose–Einstein condensates as dynamic memory devices for coherent optical information processing. Specifically, the number of ultraslow pulses that can be simultaneously present within the storage time in the condensate has been analyzed. By modeling short-pulse propagation through the condensate, taking into account high-order dispersive properties, constraints on the information storage capacity are discussed. The roles of temperature, spatial inhomogeneity, the interatomic interactions, and the coupling laser on the pulse shape are pointed out. For a restricted set of parameters, it has been found that coherent optical information storage capacity would be optimized.

© 2006 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(210.4680) Optical data storage : Optical memories
(270.1670) Quantum optics : Coherent optical effects
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Optical Data Storage

History
Original Manuscript: December 12, 2005
Revised Manuscript: March 13, 2006
Manuscript Accepted: May 5, 2006

Citation
Devrim Tarhan, Alphan Sennaroglu, and Özgür E. Müstecaplioğlu, "Dispersive effects on optical information storage in Bose-Einstein condensates with ultraslow short pulses," J. Opt. Soc. Am. B 23, 1925-1933 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-9-1925


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metrespersecond in an ultracold atomic gas," Nature 397, 594-598 (1999). [CrossRef]
  2. D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, "Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation," Phys. Rev. Lett. 83, 1767-1770 (1999). [CrossRef]
  3. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999). [CrossRef]
  4. S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997). [CrossRef]
  5. J. P. Marangos, "Topical review: electromagnetically induced transparency," J. Mod. Opt. 45, 471-503 (1998). [CrossRef]
  6. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, 1997).
  7. M. D. Lukin, "Colloquium: trapping and manipulating photon states in atomic ensembles," Rev. Mod. Phys. 75, 457-472 (2003). [CrossRef]
  8. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: optics in coherent media," Rev. Mod. Phys. 77, 633-673 (2005). [CrossRef]
  9. M. D. Lukin and A. Imamoglu, "Nonlinear optics and quantum entanglement of ultraslow single photons," Phys. Rev. Lett. 84, 1419-1422 (2000). [CrossRef] [PubMed]
  10. H. Kang, G. Hernandez, and Y. Zhu, "Resonant four-wave mixing with slow light," Phys. Rev. A 70, 061804(R) (2004). [CrossRef]
  11. M. Fleischhauer and M. D. Lukin, "Dark-state polaritons in electromagnetically induced transparency," Phys. Rev. Lett. 84, 5094-5097 (2000). [CrossRef] [PubMed]
  12. M. D. Lukin, S. F. Yelin, and M. Fleischhauer, "Entanglement of atomic ensembles by trapping correlated photon states," Phys. Rev. Lett. 84, 4232-4235 (2000). [CrossRef] [PubMed]
  13. M. D. Lukin and A. Imamolu, "Controlling photons using electromagnetically induced transparency," Nature 413, 273-276 (2001). [CrossRef] [PubMed]
  14. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of Light in atomic vapor," Phys. Rev. Lett. 86, 783786 (2001). [CrossRef]
  15. Y. Li, P. Zhang, P. Zanardi, and C. P. Sun, "Non-Abelian geometric quantum memory with an atomic ensemble," Phys. Rev. A 70, 032330 (2004). [CrossRef]
  16. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001). [CrossRef] [PubMed]
  17. X.-G. Wei, J.-H. Wu, G.-X. Sun, Z. Shao, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, "Splitting of an electromagnetically induced transparency window of rubidium atoms in a static magnetic field," Phys. Rev. A 72, 023806 (2005). [CrossRef]
  18. V. A. Sautenkov, Y. V. Rostovtsev, C. Y. Ye, G. R. Welch, O. Kocharovskaya, and M. O. Scully, "Electromagnetically induced transparency in rubidium vapor prepared by a comb of short optical pulses," Phys. Rev. A 71, 063804 (2005). [CrossRef]
  19. Q. Sun, Y. V. Rostovtsev, J. P. Dowling, M. O. Scully, and M. S. Zubairy, "Optically controlled delays for broadband pulses," Phys. Rev. A 72, 031802(R) (2005). [CrossRef]
  20. M. Bashkansky, G. Beadie, Z. Dutton, F. K. Fatemi, J. Reintjes, and M. Steiner, "Slow-light dynamics of large-bandwidth pulses in warm rubidium vapor," Phys. Rev. A 72, 033819 (2005). [CrossRef]
  21. S. E. Harris, J. E. Field, and A. Kasapi, "Dispersive properties of electromagnetically induced transparency," Phys. Rev. A 46, R29-R32 (1992). [CrossRef] [PubMed]
  22. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of ultraslow and stored light pulses in a solid," Phys. Rev. Lett. 88, 023602 (2002). [CrossRef] [PubMed]
  23. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991). [CrossRef]
  24. G. Morigi and G. Agarwal, "Temperature variation of ultraslow light in a cold gas," Phys. Rev. A 62, 013801 (2000). [CrossRef]
  25. W. Zhang, Z. Xu, and L. You, "Effective size of a trapped atomic Bose gas," Phys. Rev. A 72, 053627 (2005). [CrossRef]
  26. S. Giorgini, L. P. Pitaevskii, and S. Stringari, "Thermodynamics of a trapped Bose-condensed gas," J. Low Temp. Phys. 109, 309-355 (1997).
  27. M. Naraschewski and D. M. Stamper-Kurn, "Analytical description of a trapped semi-ideal Bose gas at finite temperature," Phys. Rev. A 58, 2423-2426 (1998). [CrossRef]
  28. V. V. Goldman, I. F. Silvera, and A. J. Leggett, "Atomic hydrogen in an inhomogeneous magnetic field: density profile and Bose-Einstein condensation," Phys. Rev. B 24, 2870-2873 (1981). [CrossRef]
  29. G. Baym and C. J. Pethick, "Ground-state properties of magnetically trapped bose-condensed rubidium gas," Phys. Rev. Lett. 76, 6-9 (1996). [CrossRef] [PubMed]
  30. E. P. Gross, "Structure of quantized vortex," Nuovo Cimento 20, 454-477 (1961). [CrossRef]
  31. L. P. Pitaevskii, "Vortex lines in an imperfect Bose gas," Zh. Eksp. Teor. Fiz. 40, 646 (1961); L. P. Pitaevskii,[Sov. Phys. JETP 13, 451-454 (1961);].
  32. V. Bagnato, D. E. Pritchard, and D. Kleppner, "Bose-Einstein condensation in an external potential," Phys. Rev. A 35, 4354-4358 (1987). [CrossRef] [PubMed]
  33. Ö. Müstecaplioglu and L. You, "Propagation of raman-matched laser pulses through a Bose-Einstein condensate," Opt. Commun. 193, 301-312 (2001). [CrossRef]
  34. P. O. Fedichev, Yu. Kagan, G. V. Shlyapnikov, and J. T. M. Walraven, "Influence of nearly resonant light on the scattering length in low-temperature atomic gases," Phys. Rev. Lett. 77, 2913-2916 (1996). [CrossRef] [PubMed]
  35. J. L. Bohn and P. S. Juliene, "Prospects for influencing scattering lengths with far-off-resonant light," Phys. Rev. A 56, 1486-1491 (1997). [CrossRef]
  36. S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, and W. Ketterle, "Observation of Feshbach resonances in a Bose-Einstein condensate," Nature 392, 151-154 (1998). [CrossRef]
  37. A. L. Garcia, Numerical Methods for Physics (Prentice-Hall, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited