OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 9 — Sep. 1, 2006
  • pp: 1938–1945

Off-axis integrated-cavity-output spectroscopy for trace-gas concentration measurements: modeling and performance

Pasquale Maddaloni, Gianluca Gagliardi, Pietro Malara, and Paolo De Natale  »View Author Affiliations


JOSA B, Vol. 23, Issue 9, pp. 1938-1945 (2006)
http://dx.doi.org/10.1364/JOSAB.23.001938


View Full Text Article

Enhanced HTML    Acrobat PDF (396 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a detailed study of the properties of off-axis-aligned high-finesse optical cavities under output time integration for spectroscopic applications. The dependence of the characteristics of the sample absorption spectra on a number of experimental parameters is investigated by developing a general model, where a Voigt absorption line shape is included into the cavity-transfer function. In this way, we address the issue of the measurement of trace amounts of gases in ambient air and single out the optimum conditions to give accurate estimates of the gas mixing ratio by the extraction of the integrated absorbance of the spectra. Quantitative results by the model are displayed for the detection of natural-abundance methane at 3 μ m as a function of the air-sample total pressure. Finally, we compare the model predictions with the results of a previous experiment, evidencing their consistency.

© 2006 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(230.5750) Optical devices : Resonators
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:
Spectroscopy

History
Original Manuscript: February 21, 2006
Revised Manuscript: April 13, 2006
Manuscript Accepted: April 13, 2006

Citation
Pasquale Maddaloni, Gianluca Gagliardi, Pietro Malara, and Paolo De Natale, "Off-axis integrated-cavity-output spectroscopy for trace-gas concentration measurements: modeling and performance," J. Opt. Soc. Am. B 23, 1938-1945 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-9-1938


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Castrillo, G. Casa, M. van Burgel, D. Tedesco, and L. Gianfrani, "First field determination of C13/C12 isotope ratio in volcanic CO2 by diode-laser," Opt. Express 12, 6515-6523 (2004). [CrossRef] [PubMed]
  2. R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, "Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 μm," Appl. Phys. B 67, 283-288 (1998). [CrossRef]
  3. E. C. Richard, K. K. Kelly, R. H. Winkler, R. Wilson, T. L. Thompson, R. J. Mclaughlin, A. L. Schmeltekopf, and A. F. Tuck, "A fast-response near-infrared tunable diode laser absorption spectrometer for in situ measurements of CH4 in the upper troposphere and lower stratosphere," Appl. Phys. B 75, 183-194 (2002). [CrossRef]
  4. L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, "Spectroscopic detection of biological NO with a quantum cascade laser," Appl. Phys. B 72, 1-5 (2001). [CrossRef]
  5. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994). [CrossRef] [PubMed]
  6. M. Ebrahimzadeh, in Solid-State Mid-Infrared Laser Sources, Vol. 89 of Topics in Applied Physics, I.T.Sorokina and K.L.Vodopyanov, eds. (Springer-Verlag, 2003), p. 179. [CrossRef]
  7. F. K. Tittel, D. Richter, and A. Fried, in Solid-State Mid-Infrared Laser Sources, Vol. 89 of Topics in Applied Physics, I.T.Sorokina and K.L.Vodopyanov, eds. (Springer-Verlag, 2003), pp. 445-451. [CrossRef]
  8. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stockel, "CW cavity ring down spectroscopy," Chem. Phys. Lett. 264, 316-322 (1997). [CrossRef]
  9. H. Dahnke, D. Kleine, W. Urban, P. Hering, and M. Mürtz, "Isotopic ratio measurement of methane in ambient air using mid-infrared cavity leak-out spectroscopy," Appl. Phys. B 72, 121-125 (2001). [CrossRef]
  10. G. von Basum, D. Halmer, P. Hering, M. Mürtz, S. Schiller, F. Müller, A. Popp, and F. Kühnemann, "Parts per trillion sensitivity for ethane in air with an optical parametric oscillator cavity leak-out spectrometer," Opt. Lett. 29, 797-799 (2004). [CrossRef] [PubMed]
  11. K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, "Highly sensitive detection of molecular absorption using a high finesse optical cavity," Opt. Commun. 107, 369-372 (1994). [CrossRef]
  12. R. Peeters, G. Berden, A. Apituley, and G. Meijer, "Open-path trace gas detection of ammonia based on cavity-enhanced absorption spectroscopy," Appl. Phys. B 71, 231-236 (2000). [CrossRef]
  13. J. Ye, L.-S. Ma, and J. L. Hall, "Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy," J. Opt. Soc. Am. B 15, 6-15 (1998). [CrossRef]
  14. J. B. Paul, L. Lapson, and J. Anderson, "Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment," Appl. Opt. 40, 4904-4910 (2001). [CrossRef]
  15. D. S. Baer, J. B. Paul, M. Gupta, and A. O'Keefe, "Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy," Appl. Phys. B 75, 261-265 (2002). [CrossRef]
  16. B. Bakowski, L. Corner, G. Hancock, R. Kotchie, R. Peverall, and G. A. D. Ritchie, "Cavity-enhanced absorption spectroscopy with a rapidly swept diode laser," Appl. Phys. B 75, 745-750 (2002). [CrossRef]
  17. V. L. Kasyutich, C. E. Canosa-Mas, C. Pfrang, S. Vaughan, and R. P. Wayne, "Off-axis continuous-wave cavity-enhanced absorption spectroscopy of narrow-band and broadband absorbers using red diode lasers," Appl. Phys. B B75, 755-761 (2002). [CrossRef]
  18. Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, "Mid-infrared quantum cascade laser based off-axis integrated output spectroscopy of biogenic nitric oxide detection," Appl. Opt. 43, 2257-2266 (2004). [CrossRef] [PubMed]
  19. M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O'Keefe, "Integrated cavity output spectroscopy measurements of nitric oxide in breath with a pulsed room-temperature quantum cascade laser," Appl. Phys. B 81, 705-710 (2005). [CrossRef]
  20. S. Williams, M. Gupta, T. Owano, D. S. Baer, A. O'Keefe, D. R. Yarkony, and S. Matsika, "Quantitative detection of O2 by cavity-enhanced spectroscopy," Opt. Lett. 29, 1066-1068 (2004). [CrossRef] [PubMed]
  21. Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, "Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy," Appl. Phys. B 82, 149-154 (2006). [CrossRef]
  22. P. Malara, P. Maddaloni, G. Gagliardi, and P. De Natale, "Combining a difference-frequency source to an off-axis high-finesse cavity for trace-gas monitoring around 3 μm," Opt. Express 14, 1304-1313 (2006). [CrossRef] [PubMed]
  23. D. Herriott, H. Kogelnik, and R. Kompfner, "Off-axis paths in spherical mirror interferometers," Appl. Opt. 3, 523-526 (1964). [CrossRef]
  24. B. Bakowski, L. Corner, G. Hancock, R. Kotchie, R. Peverall, and G. A. D. Ritchie, "Cavity-enhanced absorption spectroscopy with a rapidly swept diode laser," Appl. Phys. B 75, 745-750 (2002). [CrossRef]
  25. R. Loudon, The Quantum Theory of Light (Oxford Science, 1973), pp. 74-78.
  26. V. N. Faddeyeva and N. M. Terent'ev, Table of Values of the Function w(z) (Pergamon, 1961), p. 15.
  27. A. Asfaw, "A fast method of modeling spectral lines," J. Quant. Spectrosc. Radiat. Transf. 70, 129-137 (2000). [CrossRef]
  28. Harvard Smithsonian Center for Astrophysics, The HITRAN Database 2004http://www.hitran.com.
  29. P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, "A 3.5-mW continuous-wave difference-frequency source around 3 μm for sub-Doppler molecular spectroscopy," Appl. Phys. B B80, 141-145 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited