OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 1 — Jan. 1, 2007
  • pp: 106–112

Size dependence of gradient and nongradient optical forces in silver nanoparticles

Vance Wong and Mark A. Ratner  »View Author Affiliations

JOSA B, Vol. 24, Issue 1, pp. 106-112 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (333 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We examine the size dependence of gradient and nongradient contributions to the optically induced force on single, isolated nanometer-sized silver particles in water under plane-wave illumination. Using a recently developed method based on discrete-dipole approximation (DDA), we find that all contributions scale linearly with volume in this regime. This dependence can be rationalized by using semiempirical considerations based on the Mie–Debye theory. We also comment on a common approach to determining conservative and nonconservative force contributions on a single particle in an externally applied field. Our analysis suggests that the Mie–Debye theory cross sections cannot be used to evaluate conservative and nonconservative contributions to the force. Finally, we comment on aspects of the relationship between DDA and continuum-based treatments of optical force phenomena and find that inclusion of multiple scattering effects are essential to an understanding of the size dependence of the forces on mesoscopic particles.

© 2006 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(240.0240) Optics at surfaces : Optics at surfaces
(260.3910) Physical optics : Metal optics

ToC Category:
Optics at Surfaces

Original Manuscript: August 10, 2006
Manuscript Accepted: August 23, 2006

Vance Wong and Mark A. Ratner, "Size dependence of gradient and nongradient optical forces in silver nanoparticles," J. Opt. Soc. Am. B 24, 106-112 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  2. A. Ashkin and J. M. Dziedzic, "Optical levitation by radiation pressure," Appl. Phys. Lett. 19, 283-285 (1971). [CrossRef]
  3. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, "Direct observation of kinesin stepping by optical trapping interferometry," Nature 365, 721-727 (1993). [CrossRef] [PubMed]
  4. B. Onoa, S. Dumont, J. Liphardt, S. B. Smith, I. Tinoco, and C. Bustamante, "Identifying kinetic barriers to mechanical unfolding of the T. thermophila ribozyme," Science 299, 1892-1895 (2003). [CrossRef] [PubMed]
  5. T. T. Perkins, D. E. Smith, and S. Chu, "Single polymer dynamics in an elongational flow," Science 276, 2016-2021 (1997). [CrossRef] [PubMed]
  6. A. Lachish-Zalait, D. Zbaida, E. Klein, and M. Elbaum, "Direct surface patterning from solutions: localized microchemistry using a focused laser," Adv. Funct. Mater. 11, 218-223 (2001). [CrossRef]
  7. M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003). [CrossRef] [PubMed]
  8. S. C. Grover, A. G. Skirtach, R. C. Gauthier, and C. P. Grover, "Automated single-cell sorting system based on optical trapping," J. Biomed. Opt. 6, 14-22 (2001). [CrossRef] [PubMed]
  9. A. Ehrlicher, T. Betz, B. Stuhrmann, D. Koch, V. Milner, M. G. Raizen, and J. Kas, "Guiding neuronal growth with light," Proc. Natl. Acad. Sci. U.S.A. 99, 16024-16028 (2002). [CrossRef] [PubMed]
  10. K. C. Neuman and S. M. Block, "Optical trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004). [CrossRef]
  11. A. Rohrbach and E. H. K. Stelzer, "Optical trapping of dielectric particles in arbitrary fields," J. Opt. Soc. Am. A 18, 839-853 (2001). [CrossRef]
  12. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  13. K. Visscher and G. J. Brakenhoff, "Theoretical study of optically induced forces on spherical particles in a single beam trap I: Rayleigh scatters," Optik 89, 174-180 (1992).
  14. P. C. Chaumet and M. Nieto-Vesperinas, "Time-averaged total force on a dipolar sphere in an electromagnetic field," Opt. Lett. 25, 1065-1067 (2000). [CrossRef]
  15. A. G. Hoekstra, M. Frijlink, L. B. F. M. Waters, and P. M. A. Sloot, "Radation forces in the discrete-dipole approximation," J. Opt. Soc. Am. A 18, 1944-1953 (2001). [CrossRef]
  16. L. Novotny, X. Bian, and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997). [CrossRef]
  17. T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, and A. I. Bishop, "Numerical modelling of optical trapping," Comput. Phys. Commun. 142, 468-471 (2001). [CrossRef]
  18. F. J. Garcia de Abajo, "Electromagnetic forces and torques in nanoparticles irradiated by plane waves," J. Quant. Spectrosc. Radiat. Transf. 89, 3-9 (2004). [CrossRef]
  19. Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996). [CrossRef]
  20. K. Svoboda and S. M. Block, "Optical trapping of metallic Rayleigh particles," Opt. Lett. 19, 930-932 (1994). [CrossRef] [PubMed]
  21. T. Sugiura, "Laser trapping of a metallic probe for near field microscopy," Top. Appl. Phys. 81, 143-161 (2001). [CrossRef]
  22. G. Mie, "Beitrage zur Optik truber Medien speziell kolloidaler Metallosungen," Ann. Phys. 25, 377-455 (1908). [CrossRef]
  23. P. Debye, "Lichtdruck auf Kugeln von bliebigem Material," Ann. Phys. 30, 57-136 (1909). [CrossRef]
  24. V. Wong and M. A. Ratner, "Explicit computation of gradient and non-gradient contributions to optical forces in the discrete-dipole approximation," J. Opt. Soc. Am. B 23, 1801-1814 (2006). [CrossRef]
  25. V. Wong and M. A. Ratner, "Gradient and non-gradient contributions to plasmon enhanced optical forces on silver nanoparticles," Phys. Rev. B 73, 075416 (2006). [CrossRef]
  26. V. Wong and M. A. Ratner, "Geometry dependent properties of optically induced forces between silver nanoparticles," J. Phys. Chem. B 110, 19243-19253 (2006). [CrossRef] [PubMed]
  27. A. Ashkin and J. P. Gordon, "Stability of radiation-pressure particle traps: an optical Earnshaw theorem," Opt. Lett. 8, 511-513 (1983). [CrossRef] [PubMed]
  28. B. T. Draine, "The discrete-dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333, 848-872 (1988). [CrossRef]
  29. B. T. Draine and P. J. Flatau, "User guide to the discrete dipole approximation code DDSCAT 6.0," arxiv.org e-print archive, astro-physics/0309069, 2 September 2003.
  30. J. R. Arias-Gonzalez and M. Nieto-Vesperinas, "Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions," J. Opt. Soc. Am. A 20, 1201-1209 (2003). [CrossRef]
  31. M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, "Near-field photonic forces," Philos. Trans. R. Soc. London Ser. A 362, 719-737 (2004). [CrossRef]
  32. P. C. Chaumet and M. Nieto-Vesperinas, "Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate," Phys. Rev. B 61, 14119-14127 (2000). [CrossRef]
  33. B. T. Draine and J. C. Weingartner, "Radiative torques on interstellar grains. I. Superthermal spin-up," Astrophys. J. 470, 551-565 (1996). [CrossRef]
  34. W. A. Kraus and G. C. Schatz, "Plasmon resonance broadening in small metal particles," J. Chem. Phys. 79, 6130-6139 (1983). [CrossRef]
  35. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  36. R. Fuchs and F. Claro, "Multipolar response of small metallic spheres: nonlocal theory," Phys. Rev. B 35, 3722-3727 (1987). [CrossRef]
  37. A. Rahmani, P. C. Chaumet, and G. W. Bryant, "On the importance of local-field corrections for polarizable particles on a finite lattice: application to the discrete dipole approximation," Astrophys. J. 607, 873-878 (2004). [CrossRef]
  38. S. D. Druger and B. V. Bronk, "Internal and scattered electric fields in the discrete dipole approximation," J. Opt. Soc. Am. B 16, 2239-2246 (1999). [CrossRef]
  39. M. J. Collinge and B. T. Draine, "Discrete-dipole approximation with polarizabilities that account for both finite wavelength and target geometry," J. Opt. Soc. Am. A 21, 2023-2028 (2004). [CrossRef]
  40. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).
  41. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  42. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Inter-Science, 1983).
  43. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  44. J. D. Jackson, Classical Electrodynamics (Wiley, 1975).
  45. L. Novotny, "Forces in optical near-fields," Top. Appl. Phys. 81, 123-141 (2001). [CrossRef]
  46. A. I. Borisenko and I. E. Tarapov, Vector and Tensor Analysis (Dover, 1968).
  47. G. E. Hay, Vector and Tensor Analysis (Dover, 1953).
  48. G. Arfken, Mathematical Methods for Physicists (Academic, 1970).
  49. A. Rohrbach, H. Kress, and E. H. K. Stelzer, "Reply to comment on: 'Trapping force, force constant, and potential depths for dielectric spheres in the presence of spherical aberrations'," Appl. Opt. 43, 1827-1829 (2004). [CrossRef]
  50. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions (Wiley-Interscience, 1992).
  51. K. D. Bonin and V. V. Kresin, Electric-Dipole Polarizabilities of Atoms, Molecules and Clusters (World Scientific, 1997). [CrossRef]
  52. G. H. Goedecke and S. G. O'Brien, "Scattering by irregular inhomogeneous particles via the digitized Green's function algorithm," Appl. Opt. 27, 2431-2438 (1988). [CrossRef] [PubMed]
  53. B. T. Draine and P. J. Flatau, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A 11, 1491-1499 (1994). [CrossRef]
  54. A. Lakhtakia, "Macroscopic theory of the coupled dipole approximation method," Opt. Commun. 79, 1-5 (1990). [CrossRef]
  55. C. M. J. Wijers, "The local field and what it means," Phys. Status Solidi A 188, 1251-1260 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited