OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 10 — Oct. 1, 2007
  • pp: 2666–2675

Optical vortices and topological phase in strongly anisotropic coiled few-mode optical fibers

Constantine N. Alexeyev, Boris A. Lapin, and Maxim A. Yavorsky  »View Author Affiliations

JOSA B, Vol. 24, Issue 10, pp. 2666-2675 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (227 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the structure of l = 1 modes of strongly anisotropic coiled weakly guiding optical fibers. By solving the vector wave equation within the framework of the perturbation theory with degeneracy, we analytically establish the expressions for modes and their polarization corrections. We show that, at certain parameters of the fiber helix, the l = 1 modes are represented by almost pure optical vortices that maintain a linear polarization in the Frenet frame. We demonstrate that, in this case, the propagation constants comprise geometrically induced terms that are proportional to the orbital angular momentum (OAM) of the mode. We show that the vortex modes acquire upon propagation additional topological phases proportional to their intrinsic OAM and to the solid angle subtended by one helix coil. The presence of such a topological phase results in rotation (at a constant polarization) of the intensity patterns; after one coil the rotation angle equals the solid angle subtended by a coil.

© 2007 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(230.7370) Optical devices : Waveguides
(260.0260) Physical optics : Physical optics
(050.4865) Diffraction and gratings : Optical vortices
(260.6042) Physical optics : Singular optics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 29, 2007
Revised Manuscript: July 21, 2007
Manuscript Accepted: August 9, 2007
Published: September 21, 2007

Constantine N. Alexeyev, Boris A. Lapin, and Maxim A. Yavorsky, "Optical vortices and topological phase in strongly anisotropic coiled few-mode optical fibers," J. Opt. Soc. Am. B 24, 2666-2675 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Nye and M. V. Berry, "Dislocations in wave trains," Proc. R. Soc. London, Ser. A 336, 165-190 (1974). [CrossRef]
  2. J. F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocation (IOP, 1999).
  3. M. Vasnetsov and K. Staliunas, eds. "Optical vortices," in Horizons of World Physics (Nova Science, 1999), Vol. 228.
  4. A. Desyatnikov, Yu. Kivshar, and L. Torner, "Optical vortices and vortex solitons," Prog. Opt. 47, 291-391 (2005). [CrossRef]
  5. G. A. Swartzlander, Jr., "Singular optics/optical vortex references," http://www.u.arizona.edu/~grovers/SO/so.html.
  6. M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, "Topological charge and angular momentum of light carrying optical vortices," Phys. Rev. A 56, 4064-4075 (1998). [CrossRef]
  7. L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (IOP, 2003). [CrossRef]
  8. T. Gahagan and G. A. Swartzlander, Jr., "Optical vortex trapping of particles," Opt. Lett. 21, 827-829 (1996). [CrossRef] [PubMed]
  9. M. S. Soskin and M. V. Vasnetsov, "Singular optics," Prog. Opt. 42, 219-276 (2001). [CrossRef]
  10. I. Freund, M. S. Soskin, and A. I. Mokhun, "Elliptic critical points in paraxial optical fields," Opt. Commun. 207, 223-253 (2002). [CrossRef]
  11. M. V. Berry, "The electric and magnetic polarization singularities of paraxial waves," J. Opt. A, Pure Appl. Opt. 6, 475-481 (2004). [CrossRef]
  12. M. V. Berry and M. R. Dennis, "Quantum cores of optical phase singularities," J. Opt. A, Pure Appl. Opt. 6, S178-S180 (2004). [CrossRef]
  13. A. Ya. Bekshaev, M. S. Soskin, "Transverse energy flows in vectorial fields of paraxial beams with singularities," Opt. Commun. 271, 332-348 (2007). [CrossRef]
  14. G. Foo, D. M. Palacios, and G. A. Swartzlander, Jr., "Optical vortex coronograph," Opt. Lett. 30, 3308-3310 (2005). [CrossRef]
  15. A. G. Peele and K. A. Nugent, "X-ray vortex beams: a theoretical analysis," Opt. Express 11, 2315-2322 (2003). [CrossRef] [PubMed]
  16. G. S. Agarwal and J. Banerji, "Spatial coherence and information entropy in optical vortex fields," Opt. Lett. 27, 800-802 (2002). [CrossRef]
  17. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas'ko, S. M. Barnett, and S. Franke-Arnold, "Free-space information transfer using light beams carrying orbital angular momentum," Opt. Express 12, 5448-5556 (2004). [CrossRef] [PubMed]
  18. S. Franke-Arnold, S. Barnett, E. Yao, J. Leach, J. Courtial, and M. Padgett, "Uncertainty principle for angular position and angular momentum," New J. Phys. 6, 103 (2004). [CrossRef]
  19. K. N. Alekseev, A. V. Volyar, and T. A. Fadeeva, "Spin-orbit interaction and evolution of optical eddies in perturbed weakly directing optical fibers," Opt. Spectrosc. 93, 639-649 (2002). [CrossRef]
  20. D. McGloin, N. B. Simpson, and M. J. Padgett, "Transfer of orbital angular momentum from a stressed fiber-optic waveguide to a light beam," Appl. Opt. 37, 469-472 (1998). [CrossRef]
  21. C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, "Transformation of optical vortices in elliptical and anisotropic optical fibres," J. Opt. A, Pure Appl. Opt. 9, 387-394 (2007). [CrossRef]
  22. C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, "Vortex-preserving weakly guiding anisotropic twisted fibres," J. Opt. A, Pure Appl. Opt. 6, S162-S165 (2004). [CrossRef]
  23. K. N. Alekseev and M. A. Yavorskii, "Twisted optical fibers sustaining propagation of optical vortices," Opt. Spectrosc. 98, 59-66 (2005). [CrossRef]
  24. C. N. Alexeyev and M. A. Yavorsky, "Optical vortices and the higher order modes of twisted strongly elliptical optical fibres," J. Opt. A, Pure Appl. Opt. 6, 824-832 (2004). [CrossRef]
  25. C. N. Alexeyev and M. A. Yavorsky, "Berry's phase for optical vortices in coiled optical fibres," J. Opt. A, Pure Appl. Opt. 9, 6-14 (2007). [CrossRef]
  26. K. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, "Optical vortices and the flow of their angular momentum in a multi mode fiber," Semicond. Phys., Quantum Electron. Optoelectron. 1, 1-8 (1998).
  27. M. V. Berry, "The geometric phase," Sci. Am. 259, 26-34 (1988). [CrossRef]
  28. R. Y. Chiao and Y.-S. Wu, "Manifestation of Berry's topological phase for the photon," Phys. Rev. Lett. 57, 933-936 (1986). [CrossRef] [PubMed]
  29. A. Tomita and R. Y. Chiao, "Observation of Berry's topological phase by use of an optical fibre," Phys. Rev. Lett. 57, 937-940 (1986). [CrossRef] [PubMed]
  30. J. N. Ross, "The rotation of the polarization in low birefringence monomode optical fibers due to geometric effects," Opt. Quantum Electron. 16, 455-461 (1984). [CrossRef]
  31. F. Wassmann and A. Ankiewicz, "Berry's phase analysis of polarization rotation in helicoidal fibers," Appl. Opt. 37, 3902-3911 (1998). [CrossRef]
  32. K. Yu. Bliokh, "Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect," Phys. Rev. Lett. 97, 043901 (2006). [CrossRef]
  33. O. J. Kwon, H. T. Lee, S. B. Lee, and S. S. Choi, "Observation of a topological phase in a noncyclic case by use of a half-turn optical fiber," Opt. Lett. 16, 223-225 (1991). [CrossRef] [PubMed]
  34. S. Ulrich, S. G. Rashleigh, and W. Eickhoff, "Bending-induced birefringence in single-mode fibers," Opt. Lett. 5, 273-275 (1980). [CrossRef] [PubMed]
  35. C. N. Alexeyev and M. A. Yavorsky, "Hybridisation of the topological and dynamical phase in coiled optical fibres," J. Opt. A, Pure Appl. Opt. 8, 647-651 (2006). [CrossRef]
  36. M. V. Berry, "Interpreting the anholonomy of coiled light," Nature 326, 277-278 (1987). [CrossRef]
  37. C. G. Chen and Q. Wang, "Local fields in single-mode helical fibres," Opt. Quantum Electron. 27, 1069-1074 (1995). [CrossRef]
  38. D. B. S. Soh, J. Nilsson, J. K. Sahu, and L. J. Cooper, "Geometrical factor modification of helical-core fiber radiation loss formula," Opt. Commun. 222, 235-242 (2003). [CrossRef]
  39. Z. Menachem and M. Mond, "Infrared wave propagation in a helical waveguide with inhomogeneous cross section and application," Electromagn. Waves 61, 159-192 (2006). [CrossRef]
  40. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1985).
  41. M. W. Shute,Sr., C. S. Brown, and J. Jarzynski, "Polarization model for a helically wound optical fiber," J. Opt. Soc. Am. A 14, 3251-3261 (1997). [CrossRef]
  42. C. Y. H. Tsao, "Polarization parameters of plane waves in hybrid birefringent optical fibers," J. Opt. Soc. Am. A 4, 1407-1412 (1987). [CrossRef]
  43. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, 1968).
  44. A. S. Davydov, Quantum Mechanics (Pergamon, 1976).
  45. V. S. Liberman and B. Ya. Zel'dovich, "Spin-orbit interaction of a photon in an inhomogeneous medium," Phys. Rev. A 45, 5199-5207 (1992). [CrossRef]
  46. A. V. Volyar, V. Z. Zhilaitis, and V. G. Shvedov, "Optical eddies in small-mode fibers: II. The spin-orbit interaction," Opt. Spectrosc. 86, 593-598 (1999).
  47. K. Yu. Bliokh, D. Yu. Frolov, and Yu. A. Kravtsov, "Non-Abelian evolution of electromagnetic waves in a weakly anisotropic inhomogeneous medium," Phys. Rev. A 75, 053821 (2007). [CrossRef]
  48. E. J. Galvez and C. D. Holmes, "Geometric phase of optical rotators," J. Opt. Soc. Am. A 16, 1981-1985 (1999). [CrossRef]
  49. M. Segev, R. Solomon, and A. Yariv, "Manifestation of Berry's phase in image-bearing optical beams," Phys. Rev. Lett. 69, 590-593 (1992). [CrossRef] [PubMed]
  50. I. V. Kataevskaya and N. D. Kundikova, "Influence of the helical shape of a fibre waveguide on the propagation of light," Quantum Electron. 25, 927-928 (1995). [CrossRef]
  51. C. N. Alexeyev and M. A. Yavorsky, "Topological phase evolving from the orbital angular momentum of "coiled" quantum vortices," J. Opt. A, Pure Appl. Opt. 8, 752-758 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited