OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 10 — Oct. 1, 2007
  • pp: 2707–2720

Multimode interference in circular step-index fibers studied with the mode expansion approach

Hongbo Li, Moysey Brio, Li Li, Axel Schülzgen, Nasser Peyghambarian, and Jerome V. Moloney  »View Author Affiliations

JOSA B, Vol. 24, Issue 10, pp. 2707-2720 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (701 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The mode expansion approach in vectorial form, using a complete set of guided modes of a circular step-index fiber (SIF), is developed and applied to analyze multimode interference in multimode fibers (MMFs) for the first time, to the best of our knowledge. The complete set of guided modes of an SIF is defined based on its modal properties, and a suitable modal orthogonality relation is identified to evaluate the coefficients in a mode expansion. An algorithm, adaptive to incident fields, is then developed to systematically and efficiently perform mode expansion in highly MMFs. The mode expansion approach is successfully applied to investigate the mode-selection properties of coreless fiber segments incorporated in multicore fiber lasers and the self-imaging in MMFs.

© 2007 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2340) Fiber optics and optical communications : Fiber optics components
(140.3290) Lasers and laser optics : Laser arrays
(140.3510) Lasers and laser optics : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 14, 2007
Revised Manuscript: August 8, 2007
Manuscript Accepted: August 9, 2007
Published: September 24, 2007

Hongbo Li, Moysey Brio, Li Li, Axel Schülzgen, Nasser Peyghambarian, and Jerome V. Moloney, "Multimode interference in circular step-index fibers studied with the mode expansion approach," J. Opt. Soc. Am. B 24, 2707-2720 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Mehta, W. S. Mohammed, and E. G. Johnson, "Multimode interference-based fiber-optic displacement sensor," IEEE Photon. Technol. Lett. 15, 1129-1131 (2003). [CrossRef]
  2. W. S. Mohammed, A. Mehta, and E. G. Johnson, "Wavelength tunable fiber lens based on multimode interference," J. Lightwave Technol. 22, 469-477 (2004). [CrossRef]
  3. R. Selvas, I. Torres-Gomez, A. Martinez-Rios, J. Alvarez-Chavez, D. May-Arrioja, P. LiKamWa, A. Mehta, and E. Johnson, "Wavelength tuning of fiber lasers using multimode interference effects," Opt. Express 13, 9439-9445 (2005). [CrossRef] [PubMed]
  4. Q. Wang and G. Farrell, "All-fiber multimode-interference-based refractometer sensor: proposal and design," Opt. Lett. 31, 317-319 (2006). [CrossRef] [PubMed]
  5. W. S. Mohammed, P. W. E. Smith, and X. Gu, "All-fiber multimode interference bandpass filter," Opt. Lett. 31, 2547-2549 (2006). [CrossRef] [PubMed]
  6. L. Li, A. Schülzgen, S. Chen, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, "Phase locking and in-phase supermode selection in monolithic multicore fiber lasers," Opt. Lett. 31, 2577-2579 (2006). [CrossRef] [PubMed]
  7. L. Li, A. Schülzgen, H. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, "Phase-locked multicore all-fiber lasers: modeling and experimental investigation," J. Opt. Soc. Am. B 24, 1721-1728 (2007). [CrossRef]
  8. O. Bryngdahl, "Image formation using self-imaging techniques," J. Opt. Soc. Am. 63, 416-419 (1973). [CrossRef]
  9. R. Ulrich, "Image formation by phase coincidences in optical waveguides," Opt. Commun. 13, 259-264 (1975). [CrossRef]
  10. L. B. Soldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995). [CrossRef]
  11. Q. Wang and G. Farrell, "Numerical investigation of multimode interference in a multimode fiber and its applications in optical sensing," Proc. SPIE 6189, 61891N (2006). [CrossRef]
  12. E. Snitzer, "Cylindrical dielectric waveguide modes," J. Opt. Soc. Am. 51, 491-498 (1961). [CrossRef]
  13. N. S. Kapany and J. J. Burke, Optical Waveguides (Academic, 1972).
  14. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  15. A. Yariv, Optical Electronics in Modern Communications (Oxford U. Press, 1997).
  16. R. B. Adler, "Properties of guided waves on inhomogeneous cylindrical structures," Research Laboratory of Electronics, Massachusetts Institute of Technology, Tech. Rep. 102 (1949).
  17. L. R. Walker, "Orthogonality relation for gyrotropic waveguides," J. Appl. Phys. 28, 377 (1957). [CrossRef]
  18. A. D. Bresler, G. H. Joshi, and N. Marcuvitz, "Orthogonality properties of modes in passive and active uniform wave guides," J. Appl. Phys. 29, 794-799 (1958). [CrossRef]
  19. A. T. Villeneuve, "Orthogonality relationships for waveguides and cavities with inhomogeneous anisotropic media," IRE Trans. Electron Devices MTT-7, 441-446 (1959).
  20. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (Prentice-Hall, 1973).
  21. R. E. Collin, Field Theory of Guided Waves (IEEE, 1991).
  22. P. R. McIsaac, "Mode orthogonality in reciprocal and nonreciprocal waveguides," IEEE Trans. Microwave Theory Tech. 39, 1808-1816 (1991). [CrossRef]
  23. C. Vassallo, Optical Waveguide Concepts (Elsevier, 1991).
  24. A. Hardy and M. Ben-Artzi, "Expansion of an arbitrary field in terms of waveguide modes," IEE Proc.: Optoelectron. 141, 16-20 (1994). [CrossRef]
  25. K. M. Gundu, M. Brio, and J. V. Moloney, "A mixed high-order vector finite element method for waveguides: convergence and spurious mode studies," Int. J. Numer. Model. 18, 351-364 (2005). [CrossRef]
  26. K. M. Gundu, College of Optical Sciences, the University of Arizona, 1630 East University Boulevard, Tucson, Arizona 85721, USA (personal communication, 2006).
  27. G. R. Hadley, "Wide-angle beam propagation using Padé approximant operators," Opt. Lett. 17, 1426-1428 (1992). [CrossRef] [PubMed]
  28. M. Wrage, P. Glas, D. Fisher, M. Leitner, D. D. Vysotsky, and A. P. Napartovich, "Phase locking in a multicore fiber laser by means of a Talbot resonator," Opt. Lett. 25, 1436-1438 (2000). [CrossRef]
  29. A. Mafi and J. V. Moloney, "Phase locking in a passive multicore photonic crystal fiber," J. Opt. Soc. Am. B 21, 897-902 (2004). [CrossRef]
  30. L. Michaille, C. R. Bennett, D. M. Taylor, T. J. Shepherd, J. Broeng, H. R. Simonsen, and A. Petersson, "Phase locking and supermode selection in multicore photonic crystal fiber lasers with a large doped area," Opt. Lett. 30, 1668-1670 (2005). [CrossRef] [PubMed]
  31. http://www.ece.byu.edu/photonics/connectors.parts/smf28.pdf.
  32. P.-L. Liu and S. De, "Fiber design--from optical mode to index profile," Opt. Eng. (Bellingham) 42, 981-984 (2003). [CrossRef]
  33. G. Arfken, Mathematical Methods for Physicists (Academic, 1985).
  34. M.Abramowitz and I.A.Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (U.S. Govternment Printing Office, 1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited