OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 10 — Oct. 1, 2007
  • pp: A1–A18

Fundamental limit for optical components

David A. B. Miller  »View Author Affiliations


JOSA B, Vol. 24, Issue 10, pp. A1-A18 (2007)
http://dx.doi.org/10.1364/JOSAB.24.0000A1


View Full Text Article

Enhanced HTML    Acrobat PDF (390 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that there is a general limit to the performance of linear optical components, based only on their size, shape, and dielectric constants. The limit is otherwise independent of the design. The mathematics involved applies generally to linear systems with arbitrarily strong multiple scattering. Relevant optical structures include dielectric stacks, photonic crystals, nanometallics, metamaterials, and slow-light structures. The limit also covers acoustic and quantum-mechanical waves, and electromagnetic waves of any frequency. In an example, a one-dimensional glass/air structure, a thickness of at least 41.7 μ m is required for the separation of pulses of 32 different frequencies near 1.55 μ m center wavelength. Larger available dielectric constants would lead to correspondingly shorter limits.

© 2007 Optical Society of America

OCIS Codes
(230.4170) Optical devices : Multilayers
(260.2030) Physical optics : Dispersion
(290.4210) Scattering : Multiple scattering
(350.7420) Other areas of optics : Waves

History
Original Manuscript: November 6, 2006
Manuscript Accepted: December 17, 2006
Published: July 19, 2007

Virtual Issues
Photonic Metamaterials (2007) JOSA A

Citation
David A. B. Miller, "Fundamental limit for optical components," J. Opt. Soc. Am. B 24, A1-A18 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-10-A1


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Lenz and C. K. Madsen, "General optical all-pass filter structures for dispersion control in WDM systems," J. Lightwave Technol. 17, 1248-1254 (1999). [CrossRef]
  2. M. Sumetsky and B. Eggleton, "Modeling and optimization of complex photonic resonant cavity circuits," Opt. Express 11, 381-391 (2003). [CrossRef] [PubMed]
  3. O. Schwelb, "Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters-a tutorial overview," J. Lightwave Technol. 22, 1380-1394 (2004). [CrossRef]
  4. K. Yu and O. Solgaard, "Tunable optical transversal filters based on a Gires-Tournois interferometer with MEMS phase shifters," IEEE J. Sel. Top. Quantum Electron. 10, 588-597 (2004). [CrossRef]
  5. T. Baba and T. Matsumoto, "Resolution of photonic crystal superprism," Appl. Phys. Lett. 81, 2325-2327 (2002). [CrossRef]
  6. B. Momeni and A. Abidi, "Optimization of photonic crystal demultiplexers based on the superprism effect," Appl. Phys. B 77, 555-560 (2003). [CrossRef]
  7. C. Y. Luo, M. Soljacic, and J. D. Joannopoulos, "Superprism effect based on phase velocities," Opt. Lett. 29, 745-747 (2004). [CrossRef] [PubMed]
  8. L. Wu, M. Mazilu, J.-F. Gallet, and T. F. Krauss, "Dual lattice photonic-crystal beam splitters," Appl. Phys. Lett. 86, 211106 (2005). [CrossRef]
  9. B. Momeni and A. Abidi, "Systematic design of superprism-based photonic crystal demultiplexers," IEEE J. Sel. Areas Commun. 23, 1355-1364 (2005). [CrossRef]
  10. M. Gerken and D. A. B. Miller, "Multilayer thin-film structures with high spatial dispersion," Appl. Opt. 42, 1330-1345 (2003). [CrossRef] [PubMed]
  11. M. Gerken and D. A. B. Miller, "Photonic nanostructures for wavelength division multiplexing," Proc. SPIE 5597, 82-96 (2004). [CrossRef]
  12. M. Gerken and D. A. B. Miller, "Limits on the performance of dispersive thin-film stacks," Appl. Opt. 44, 3349-3357 (2005). [CrossRef] [PubMed]
  13. M. Gerken and D. A. B. Miller, "The relationship between the superprism effect in one-dimensional photonic crystals and spatial dispersion in nonperiodic thin-film stacks," Opt. Lett. 30, 2475-2477 (2005). [CrossRef] [PubMed]
  14. R. E. Klinger, C. A. Hulse, C. K. Carniglia, and R. B. Sargent, "Beam displacement and distortion effects in narrowband optical thin-film filters," Appl. Opt. 45, 3237-3242 (2006). [CrossRef] [PubMed]
  15. Y. Jiao, S. H. Fan, and D. A. B. Miller, "Designing for beam propagation in periodic and nonperiodic photonic nanostructures: Extended Hamiltonian method," Phys. Rev. E 70, 036612-1-036612-9 (2004). [CrossRef]
  16. Y. Jiao, S. H. Fan, and D. A. B. Miller, "Demonstration of systematic photonic crystal device design and optimization by low rank adjustments: an extremely compact mode separator," Opt. Lett. 30, 141-143 (2005). [CrossRef] [PubMed]
  17. Y. Jiao, S. H. Fan, and D. A. B. Miller, "Systematic photonic crystal device design: global and local optimization and sensitivity analysis," IEEE J. Quantum Electron. 42, 266-279 (2006). [CrossRef]
  18. P. J. van Heerden, "Theory of optical information storage in solids," Appl. Opt. 2, 393-400 (1963). [CrossRef]
  19. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).
  20. H. Lee, X. G. Gu, and D. Psaltis, "Volume holographic interconnections with maximal capacity and minimal cross talk," J. Appl. Phys. 65, 2191-2194 (1989). [CrossRef]
  21. X. M. Yi, P. Yeh, C. Gu, and S. Campbell, "Crosstalk in volume holographic memory," Proc. IEEE 87, 1912-1930 (1999). [CrossRef]
  22. K. Tian and G. Barbastathis, "Cross talk in resonant holographic memories," J. Opt. Soc. Am. A 21, 751-756 (2004). [CrossRef]
  23. J. Shamir, "Analysis of volume holographic storage allowing large-angle illumination," J. Opt. Soc. Am. B 22, 975-986 (2005). [CrossRef]
  24. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999). [CrossRef]
  25. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, "Optical delay lines based on optical fibers," IEEE J. Quantum Electron. 37, 525-532 (2001). [CrossRef]
  26. R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, "Slow-light optical buffers: capabilities and fundamental limitations," J. Lightwave Technol. 23, 4046-4066 (2005). [CrossRef]
  27. M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, "Distortion management in slow-light pulse delay," Opt. Express 13, 9995-10002 (2005). [CrossRef] [PubMed]
  28. M. Povinelli, S. Johnson, and J. Joannopoulos, "Slow-light, band-edge waveguides for tunable time delays," Opt. Express 13, 7145-7159 (2005). [CrossRef] [PubMed]
  29. Z. S. Yang, N. H. Kwong, R. Binder, and A. L. Smirl, "Distortionless light pulse delay in quantum-well Bragg structures," Opt. Lett. 30, 2790-2792 (2005). [CrossRef] [PubMed]
  30. M. R. Fisher and S.-L. Chuang, "Variable group delay and pulse reshaping of high bandwidth optical signals," IEEE J. Quantum Electron. 41, 885-891 (2005). [CrossRef]
  31. J. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. Willner, and A. Gaeta, "All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion," Opt. Express 13, 7872-7877 (2005). [CrossRef] [PubMed]
  32. M. S. Bigelow, N. N. Lepeshkin, H. Shin, and R. W. Boyd, "Propagation of smooth and discontinuous pulses through materials with very large or very small group velocities," J. Phys.: Condens. Matter 18, 3117-3126 (2006). [CrossRef]
  33. A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, "Delay limit of slow light in semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 18, 731-733 (2006). [CrossRef]
  34. R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, "Maximum time delay achievable on propagation through a slow-light medium," Phys. Rev. A 71, 023801 (2005). [CrossRef]
  35. J. B. Khurgin, "Performance limits of delay lines based on optical amplifiers," Opt. Lett. 31, 948-950 (2006). [CrossRef] [PubMed]
  36. D. A. B. Miller, "Spatial channels for communicating with waves between volumes," Opt. Lett. 23, 1645-1647 (1998). [CrossRef]
  37. D. A. B. Miller, "Communicating with waves between volumes - evaluating orthogonal spatial channels and limits on coupling strengths," Appl. Opt. 39, 1681-1699 (2000). [CrossRef]
  38. R. Piestun and D. A. B. Miller, "Electromagnetic degrees of freedom of an optical system," J. Opt. Soc. Am. A 17, 892-902 (2000). [CrossRef]
  39. G. W. Hanson and A. B. Yakovlev, Operator Theory for Electromagnetics (Springer-Verlag, 2002), p. 172.
  40. G. W. Hanson and A. B. Yakovlev, Operator Theory for Electromagnetics (Springer-Verlag, 2002), p. 259.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited