OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 10 — Oct. 1, 2007
  • pp: A34–A39

Stochastic optimization of low-loss optical negative-index metamaterial

Alexander V. Kildishev, Uday K. Chettiar, Zhengtong Liu, Vladimir M. Shalaev, Do-Hoon Kwon, Zikri Bayraktar, and Douglas H. Werner  »View Author Affiliations


JOSA B, Vol. 24, Issue 10, pp. A34-A39 (2007)
http://dx.doi.org/10.1364/JOSAB.24.000A34


View Full Text Article

Enhanced HTML    Acrobat PDF (391 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical metamaterial consisting of metal-dielectric composites creates a complicated system that is not amenable to analytical solutions. This presents a challenge in optimizing these intricate systems. We present the application of three nature-inspired stochastic optimization techniques in conjunction with fast numerical electromagnetic solvers to yield a metamaterial that satisfies a required design criterion. In particular, three stochastic optimization tools (genetic algorithm, particle swarm optimization, and simulated annealing) are used for designing a low-loss optical negative index metamaterial. A negative refractive index around 0.8 + 0.2 i is obtained at a wavelength of 770 nm . The particle swarm optimization algorithm is found to be the most efficient in this case.

© 2007 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(260.5740) Physical optics : Resonance

History
Original Manuscript: March 6, 2007
Manuscript Accepted: April 20, 2007
Published: July 20, 2007

Virtual Issues
Photonic Metamaterials (2007) JOSA A

Citation
Alexander V. Kildishev, Uday K. Chettiar, Zhengtong Liu, Vladimir M. Shalaev, Do-Hoon Kwon, Zikri Bayraktar, and Douglas H. Werner, "Stochastic optimization of low-loss optical negative-index metamaterial," J. Opt. Soc. Am. B 24, A34-A39 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-10-A34


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2002). [CrossRef]
  2. W. Cai, D. A. Genov, and V. M. Shalaev, "Superlens based on metal-dielectric composites," Phys. Rev. B 72, 193101 (2005). [CrossRef]
  3. N. Fang and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003). [CrossRef]
  4. D. Melville and R. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005). [CrossRef] [PubMed]
  5. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  6. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005). [CrossRef]
  7. U. K. Chettiar, A. V. Kildishev, T. A. Klar, and V. M. Shalaev, "Negative index metamaterial combining magnetic resonators with metal films," Opt. Express 14, 7872-7877 (2006). [CrossRef] [PubMed]
  8. T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Negative-index metamaterials: going optical," IEEE J. Sel. Top. Quantum Electron. 12, 1106-1115 (2006). [CrossRef]
  9. A. V. Kildishev, U. K. Chettiar, H.-K. Yuan, W. Cai, and V. M. Shalaev, "Optimizing optical negative index materials: feedback from fabrication," in Proceedings of the 23rd International Review of Progress in Applied Computational Electromagnetics (Applied Computational Electromagnetics Society, 2007), pp. 11-16.
  10. T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, "Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation," IEEE Trans. Antennas Propag. 47, 843-850 (1999). [CrossRef]
  11. J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics (IEEE, 1998). [CrossRef]
  12. L. Li and D. H. Werner, "Design of all-dielectric frequency selective surfaces using genetic algorithms combined with the finite element-boundary integral method," in Proceedings of the Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting, Vol. 4A, (IEEE, 2005), pp. 376-379.
  13. A. V. Kildishev and U. K. Chettiar, "Cascading optical negative index metamaterials," J. Appl. Comput. Electromagnetics Soc. 22, 172-183 (2007).
  14. D. T. Pham and D. Karaboga, Intelligent Optimization Techniques (Springer-Verlag, 2000). [CrossRef]
  15. R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms (Wiley-Interscience, 2004).
  16. Y. Rahmat-Samii and E. Michelssen, eds., Electromagnetic Optimization by Genetic Algorithms (Wiley-Interscience, 1999).
  17. D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. Wilhelm, "The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces," IEEE Trans. Antennas Propag. 53, 8-17 (2005). [CrossRef]
  18. D. J. Kern, D. H. Werner, and M. Lisovich, "Metaferrites: using electromagnetic bandgap structures to synthesize metamaterial ferrites," IEEE Trans. Antennas Propag. 53, 1382-1389 (2005). [CrossRef]
  19. M. A. Gingrich and D. H. Werner, "Synthesis of low/zero index of refraction metamaterials from frequency selective surfaces using genetic algorithms," Electron. Lett. 41, 1266-1267 (2005). [CrossRef]
  20. J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. Drupp, and L. Li, "The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications," IEEE Trans. Antennas Propag. 54, 1265-1276 (2006). [CrossRef]
  21. J. Kennedy and R. C. Eberhart, Swarm Intelligence (Academic, 2001).
  22. D. W. Boeringer and D. H. Werner, "Particle swarm optimization versus genetic algorithms for phased array synthesis," IEEE Trans. Antennas Propag. 52, 771-779 (2004). [CrossRef]
  23. D. W. Boeringer and D. H. Werner, "Efficiency-constrained particle swarm optimization of a modified Bernstein polynomial for conformal array excitation amplitude synthesis," IEEE Trans. Antennas Propag. 53, 2662-2673 (2005). [CrossRef]
  24. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficient," Phys. Rev. B 65, 195104 (2002). [CrossRef]
  25. A. V. Kildishev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and V. M. Shalaev, "Negative refractive index in optics of metal-dielectric composites," J. Opt. Soc. Am. B 23, 423-433 (2006). [CrossRef]
  26. S. Chakravarty, R. Mittra, and N. R. Williams, "Application of a micro-genetic algorithm (MGA) to the design of broad-band microwave absorbers using multiple frequency selective surface screens buried in dielectrics," IEEE Trans. Antennas Propag. 50, 284-296 (2002). [CrossRef]
  27. H.-K. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, "A negative permeability material at red light," Opt. Express 15, 1076-1083 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited