OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 12 — Dec. 1, 2007
  • pp: 2979–2987

Broadband photonic arbitrary waveform generation based on spatial-spectral holographic materials

Christoffer J. Renner, Randy R. Reibel, Mingzhen Tian, Tiejun Chang, and W. Randall Babbitt  »View Author Affiliations

JOSA B, Vol. 24, Issue 12, pp. 2979-2987 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (627 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We discuss an approach for the practical implementation of photonic arbitrary waveform generation of microwave signals. We describe and demonstrate an approach using spatial-spectral (S2) holography in rare earth ion doped crystals that has the potential to achieve extremely wide bandwidths ( > 40 GHz ) using conventional electro-optic phase modulators and low bandwidth ( < 100 MHz ) control electronics. We provide analysis of this approach, show simulations, and perform experimental demonstrations of the technique. We show a pulse compression factor of 15,000 and demonstrate the largest effective bandwidth of 3.8 GHz to date for pulse compression using S2 holography. We also show control and manipulation of up to 30 independent compressed pulses for the creation of arbitrary waveforms.

© 2007 Optical Society of America

OCIS Codes
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(300.6240) Spectroscopy : Spectroscopy, coherent transient
(320.5520) Ultrafast optics : Pulse compression

ToC Category:
Ultrafast Optics

Original Manuscript: April 9, 2007
Revised Manuscript: August 17, 2007
Manuscript Accepted: September 3, 2007
Published: November 14, 2007

Christoffer J. Renner, Randy R. Reibel, Mingzhen Tian, Tiejun Chang, and W. Randall Babbitt, "Broadband photonic arbitrary waveform generation based on spatial-spectral holographic materials," J. Opt. Soc. Am. B 24, 2979-2987 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. Agilent, "N6030A Arbitrary Waveform Generator," http://cp.literature.agilent.com/litweb/pdf/5989-1457EN.pdf.
  2. Tektronix, "Arbitrary Waveform Generator 7102," http://www.tek.com/products/signallowbarsources/awg7000/index.html.
  3. W. Cheng, R. Stevens, F. Rupp, C. Engels, W. Ali, M. Choi, D. Devendorf, S. Ding, L. Linder, K. Liu, and T. Tat, "A 3b 40GS/s ADC-DAC in 0.12 mu m SiGe," in Proceedings of IEEE International Solid State Circuits Conference (IEEE, 2004), pp. 262-263.
  4. J. Chou, Y. Han, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," IEEE Photon. Technol. Lett. 15, 581-583 (2003). [CrossRef]
  5. J. D. McKinney, I. S. Lin, and A. M. Weiner, "Ultrabroadband arbitrary electromagnetic waveform synthesis," Opt. Photonics News 17, 24-29 (2006). [CrossRef]
  6. G. H. Lee and A. M. Weiner, "Programmable optical pulse burst manipulation using a virtually imaged phased array (VIPA) based Fourier transform pulse shaper," J. Lightwave Technol. 23, 3916-3923 (2005). [CrossRef]
  7. T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, "Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser," IEEE Photon. Technol. Lett. 14, 1608-1610 (2002). [CrossRef]
  8. H. Kim, A. B. Kozyrev, S. J. Ho, and D. W. van der Weide, "Fourier synthesizer using left-handed transmission lines," in Proceedings of IEEE International Microwave Symposium (IEEE, 2005) pp. 4-8.
  9. Y. Han, O. Boyraz, and B. Jalali, "Tera-sample per second real-time waveform digitizer," Appl. Phys. Lett. 87, 241116 (2005). [CrossRef]
  10. X. Ribeyre, C. Rouyer, F. Raoult, D. Husson, C. Sauteret, and A. Migus, "All-optical programmable shaping of narrow-band nanosecond pulses with picosecond accuracy by use of adapted chirps and quadratic nonlinearities," Opt. Lett. 26, 1173-1175 (2001). [CrossRef]
  11. Z. Barber, M. Tian, R. Reibel, and W. R. Babbitt, "Optical pulse shaping using optical coherent transients," Opt. Express 10, 1145-1147 (2002). [PubMed]
  12. R. Reibel, T. Chang, M. Tian, and W. R. Babbitt, "Optical linear sideband chirp compression for microwave arbitrary waveform generation," in IEEE Microwave Photonics Conference Proceedings (IEEE, 2004) pp. 197-200.
  13. R. Reibel, Z. Barber, M. Tian, and W. R. Babbitt, "High bandwidth spectral gratings programmed with linear frequency chirps," J. Lumin. 98, 355-365 (2002). [CrossRef]
  14. Z. W. Barber, J. Law, M. Tian, and W. R. Babbitt, "Optical coherent transient high bandwidth arbitrary waveform generation and pulse shaping," presented at the 8th International Meeting on Hole Burning, Single Molecule, and Related Spectroscopies: Science and Applications (HBSM'03)MT, USA, 27-31July 2003.
  15. V. Crozatier, G. Gorju, J.-L. Le Gouët, F. Bretenaker, and I. Lorgeré, "Wideband and high-resolution coherent optical transients with a frequency-agile laser oscillator," Opt. Lett. 31, 3264-3266 (2006). [CrossRef] [PubMed]
  16. See, e.g., EOSPACE product line (www.eospace.com).
  17. R. Reibel, Z. Barber, M. Tian, and W. R. Babbitt, "Temporally overlapped linear frequency chirped programming for true-time delay applications," Opt. Lett. 27, 494-496 (2002). [CrossRef]
  18. E. C. Farnett and G. H. Stevens, "Pulse compression radar," in Radar Handbook, 2nd ed., M.Skolnik, ed. (McGraw-Hill, 1990) pp. 10.11-10.13.
  19. R. L. Cone, R. W. Equall, Y. Sun, R. M. Macfarlane, and R. Hutcheson, "Ultraslow dephasing and dephasing mechanisms in rare earth materials for optical data storage," Laser Phys. 5, 573 (1995).
  20. Y. S. Bai and T. W. Mossberg, "Experimental studies of photon-echo pulse compression," Opt. Lett. 11, 30-32 (1986). [CrossRef] [PubMed]
  21. L. Menager, J. L. Le Gouet, and I. Lorgere, "Time-to-frequency Fourier transformation with photon echoes," Opt. Lett. 26, 1397-1399 (2001). [CrossRef]
  22. L. Ménager, I. Lorgeré, J.-L. Le Gouët, R. Mohan Krishna, and S. Kröll, "Time-domain Fresnel-to-Fraunhofer diffraction with photon echoes," Opt. Lett. 24, 927-929 (1999). [CrossRef]
  23. V. Crozatier, V. Lavielle, F. Bretenaker, J.-L. Le Gouët, and I. Lorgeré, "High resolution radio frequency spectral analysis with photon echo chirp transfor in an Er:YSO crystal," IEEE J. Quantum Electron. 40, 1450-1457 (2004). [CrossRef]
  24. K. D. Merkel and W. R. Babbitt, "Optical coherent transient continuously programmed continuous processor," Opt. Lett. 24, 172-174 (1999). [CrossRef]
  25. T. W. Mossberg, "Time-domain frequency-selective optical storage," Opt. Lett. 7, 77-79 (1982). [CrossRef] [PubMed]
  26. X. Wang, M. Afzelius, N. Ohlsson, U. Gustafsson, and S. Kroll, "Coherent transient data-rate conversion and data transformation," Opt. Lett. 25, 945-947 (2000). [CrossRef]
  27. L. Levin, "Mode-hop-free electro-optically tuned diode laser," Opt. Lett. 27, 237-239 (2002). [CrossRef]
  28. K. S. Repasky, J. D. Williams, J. L. Carlsten, E. J. Noonan, and G. W. Switzer, "Tunable external-cavity diode laser based on integrated waveguide structures," Opt. Eng. (Bellingham) 42, 2229-2234 (2003). [CrossRef]
  29. V. Lavielle, I. Lorgere, J.-L. Gouet, S. Tonda, and D. Dolfi, "Wideband versatile radio-frequency spectrum analyzer," Opt. Lett. 28, 384-386 (2003). [CrossRef] [PubMed]
  30. C. Greiner, B. Boggs, T. Wang, and T. W. Mossberg, "Laser frequency stabilization by means of optical self-heterodyne beat-frequency control," Opt. Lett. 23, 1280-1282 (1998). [CrossRef]
  31. V. Crozatier, G. Gorju, F. Bretenaker, J.-L. Le Gouët, I. Lorgeré, C. Gagnol, and E. Ducloux, "Phase locking of a frequency agile laser," Appl. Phys. Lett. 89, 261115 (2006). [CrossRef]
  32. G. Gorju, A. Jucha, A. Jain, V. Crozatier, I. Lorgeré, J.-L. Le Gouët, F. Bretenaker, and M. Colice, "Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control," Opt. Lett. 32, 484-486 (2007). [CrossRef] [PubMed]
  33. P. B. Sellin, N. M. Strickland, T. Böttger, J. L. Carlsten, and R. L. Cone, "Laser stabilization at 1536nm using regenerative spectral hole burning," Phys. Rev. B 63, 155111 (2001). [CrossRef]
  34. R. Willyard, Airborne Radar for Measuring Snow Thickness over Sea Ice (U. of Kansas, 2004).
  35. R. Reibel, Z. Barber, M. Tian, W. R. Babbitt, Z. Cole, and K. D. Merkel, "Amplification of high bandwidth phase modulated signals at 793nm," J. Opt. Soc. Am. B 19, 2315-2322 (2002). [CrossRef]
  36. T. Chang, M. Tian, Z. W. Barber, and W. R. Babbitt, "Numerical modeling of optical coherent transient processes with complex configurations-II. Angled beams with arbitrary phase modulations," J. Lumin. 107, 138-145 (2004) [CrossRef]
  37. T. K. Noguchi, O. Mitomi, and H. Miyazawa, "Millimeter-wave Ti:LiNbO optical modulators," J. Lightwave Technol. 16, 615-619 (1998). [CrossRef]
  38. O. V. Kolokoltsev, C. S. Pérez, and R. A. Correa, "Phase-reversal broad-band traveling-wave LiNbO3 electro-optic modulator optimized for time-domain applications by a genetic algorithm," IEEE J. Quantum Electron. 8, 1258-1264 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited