OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 12 — Dec. 1, 2007
  • pp: 3007–3013

Parallel, series, and intermediate interconnections of optical nanocircuit elements. 1. Analytical solution

Alessandro Salandrino, Andrea Alù, and Nader Engheta  »View Author Affiliations

JOSA B, Vol. 24, Issue 12, pp. 3007-3013 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (526 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Following our recent development of a paradigm for extending the classic concepts of circuit elements to the infrared and optical frequencies [ Phys. Rev. Lett. 95, 095504 (2005) ], in this paper we investigate the possibility of connecting nanoparticles in series and in parallel configurations, acting as nanocircuit elements. In particular, here we analyze a pair of conjoined half-cylinders whose relatively simple geometry may be studied and analyzed analytically. In this first part of this work, we derive a novel closed-form quasi-static analytical solution of the boundary-value problem associated with this geometry, which will be applied in Part 2 for a nanocircuit and physical interpretation of these results.

© 2007 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.5850) Scattering : Scattering, particles
(350.4600) Other areas of optics : Optical engineering

ToC Category:
Optics at Surfaces

Original Manuscript: June 11, 2007
Revised Manuscript: September 18, 2007
Manuscript Accepted: October 7, 2007
Published: November 19, 2007

Alessandro Salandrino, Andrea Alù, and Nader Engheta, "Parallel, series, and intermediate interconnections of optical nanocircuit elements. 1. Analytical solution," J. Opt. Soc. Am. B 24, 3007-3013 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. M. Di Ventra, S. Evoy, and J. R. Heflin, Jr., Introduction to Nanoscale Science and Technology (Kluwer Academic, 2004). [CrossRef]
  2. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  3. M. Kerker, "Founding fathers of light scattering and surface-enhanced Raman scattering," Appl. Opt. 30, 4699-4705 (1991). [CrossRef] [PubMed]
  4. C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, 2005).
  5. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998). [CrossRef]
  6. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, 16356 (2000). [CrossRef]
  7. A. Alù and N. Engheta, "Optical nano-transmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regime," J. Opt. Soc. Am. B 23, 571-583 (2006). [CrossRef]
  8. A. Alù and N. Engheta, "Theory of linear chains of metamaterial/plasmonic particles as sub-diffraction optical nanotransmission lines," Phys. Rev. B 74, 205436 (2006). [CrossRef]
  9. A. Alù, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt. Express 14, 1557-1567 (2006). [CrossRef] [PubMed]
  10. U. K. Chettiar, A. V. Kildishev, T. A. Klar, and V. M. Shalaev, "Negative index metamaterial combining magnetic resonators with metal films," Opt. Express 14, 7872-7877 (2006). [CrossRef] [PubMed]
  11. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005). [CrossRef]
  12. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006). [CrossRef] [PubMed]
  13. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, "Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies," J. Opt. Soc. Am. B 23, 434-438 (2006). [CrossRef]
  14. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature (London) 438, 335-338 (2005). [CrossRef]
  15. A. Alù and N. Engheta, "Three-dimensional nanotransmission lines at optical frequencies: a recipe for broadband negative-refraction optical metamaterials," Phys. Rev. B 75, 024304 (2007). [CrossRef]
  16. N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nano-inductors, nano-capacitors, and nano-resistors," Phys. Rev. Lett. 95, 095504 (2005). [CrossRef] [PubMed]
  17. A. Alù, A. Salandrino, and N. Engheta, "Parallel, series, and intermediate interconnections of optical nanocircuit elements. 2. Nanocircuit and physical interpretation," J. Opt. Soc. Am. B 24, 3014-3022 (2007). [CrossRef]
  18. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  19. L. Landau and E. M. Lifschitz, Electrodynamics of Continuous Media (Pergamon, 1984).
  20. R. W. Scharstein, "Mellin transform solution for the static line-source excitation of a dielectric wedge," IEEE Trans. Antennas Propag. 41, 1675-1679 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited