OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 2 — Feb. 1, 2007
  • pp: 241–248

Photonic entanglement as a resource in quantum computation and quantum communication

Robert Prevedel, Markus Aspelmeyer, Caslav Brukner, Anton Zeilinger, and Thomas D. Jennewein  »View Author Affiliations

JOSA B, Vol. 24, Issue 2, pp. 241-248 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (408 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Entanglement is an essential resource in current experimental implementations for quantum information processing. We review a class of experiments exploiting photonic entanglement, ranging from one-way quantum computing over quantum communication complexity to long-distance quantum communication. We then propose a set of feasible experiments, that will exploit the advantages of photonic entanglement for quantum information processing.

© 2007 Optical Society of America

OCIS Codes
(200.0200) Optics in computing : Optics in computing
(200.3050) Optics in computing : Information processing
(270.0270) Quantum optics : Quantum optics

ToC Category:

Original Manuscript: July 18, 2006
Revised Manuscript: September 10, 2006
Manuscript Accepted: September 19, 2006
Published: January 26, 2007

Robert Prevedel, Markus Aspelmeyer, Caslav Brukner, Anton Zeilinger, and Thomas D. Jennewein, "Photonic entanglement as a resource in quantum computation and quantum communication," J. Opt. Soc. Am. B 24, 241-248 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Schrödinger, "Die gegenwärtige situation in der quantenmechanik," Naturwiss. 23, 807-812; 823-828; 844-849 (1935). [CrossRef]
  2. C. S. Wu and I. Shaknov, "The angular correlation of annihilation radiation," Phys. Rev. 77, 136-136 (1950). [CrossRef]
  3. C. A. Kocher and E. D. Commins, "Polarization correlation of photons emitted in an atomic cascade," Phys. Rev. Lett. 18, 575-577 (1967). [CrossRef]
  4. J. F. Clauser, "Experimental limitations to the validity of semiclassical radiation theories," Phys. Rev. A 6, 49-54 (1972). [CrossRef]
  5. J. F. Clauser, "Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effect," Phys. Rev. D 9, 853-860 (1974). [CrossRef]
  6. J. S. Bell, "On the Einstein-Podolsky-Rosen paradox," Physics (N.Y.) 1, 195-200 (1964).
  7. S. J. Freedman and J. F. Clauser, "Experimental test of local hidden-variable theories," Phys. Rev. Lett. 28, 938-941 (1972). [CrossRef]
  8. A. Aspect, J. Dalibard, and G. Roger, "Experimental test of Bell's inequalities using time-varying analyzers," Phys. Rev. Lett. 49, 1804-1807 (1982). [CrossRef]
  9. G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, "Violation of Bell's inequality under strict Einstein locality conditions," Phys. Rev. Lett. 81, 5039-5043 (1998). [CrossRef]
  10. S. Wiesner, "Conjugate coding," SIGACT News 15, 78-88 (1983). [CrossRef]
  11. C. H. Bennett and G. Brassard, "Quantum cryptography: public key distribution and coin-tossing," in Proceedings of IEEE International Conference on Computers, Systems and Signa Processing (IEEE, 1984), pp. 175-179.
  12. A. K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett. 67, 661-663 (1991). [CrossRef] [PubMed]
  13. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993). [CrossRef] [PubMed]
  14. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurte, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-579 (1997). [CrossRef]
  15. C. H. Bennett and S. J. Wiesner, "Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states," Phys. Rev. Lett. 69, 2881-2884 (1992). [CrossRef] [PubMed]
  16. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, "Dense coding in experimental quantum communication," Phys. Rev. Lett. 76, 4656-4659 (1996). [CrossRef] [PubMed]
  17. E. Knill, R. Laflamme, and G. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2000). [CrossRef]
  18. P. Kok, W. Munro, K. Nemoto, T. Ralph, J. P. Dowling, and G. Milburn, "Review article: linear optical quantum computing," arxiv.org e-print archive, quant-ph/0512071, March 14, 2005, http://arxiv.org/abs/quant-ph/0512071.
  19. R. Raussendorf and H. J. Briegel, "A one-way quantum computer," Phys. Rev. Lett. 86, 5188-5191 (2001). [CrossRef] [PubMed]
  20. M. A. Nielsen, "Optical quantum computation using cluster states," Phys. Rev. Lett. 93, 040503 (2004). [CrossRef] [PubMed]
  21. P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, "Experimental one-way quantum computing," Nature 434, 169-176 (2005). [CrossRef] [PubMed]
  22. N. Kiesel, C. Schmid, U. Weber, G. Toth, O. Gühne, R. Ursin, and H. Weinfurter, "Experimental analysis of a four-qubit photon cluster state," Phys. Rev. Lett. 95, 210502 (2005). [CrossRef] [PubMed]
  23. A.-N. Zhang, C.-Y. Lu, X.-Q. Zhou, Y.-A. Chen, Z. Zhao, T. Yang, and J.-W. Pan, "Experimental construction of optical multiqubit cluster states from Bell states," Phys. Rev. A 73, 022330 (2006). [CrossRef]
  24. N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O'Brien, G. J. Pryde, and A. G. White, "Demonstration of a simple entangling optical gate and its use in Bell-state analysis," Phys. Rev. Lett. 95, 210504 (2005). [CrossRef] [PubMed]
  25. N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, "Linear optics controlled-phase gate made simple," Phys. Rev. Lett. 95, 210505 (2005). [CrossRef] [PubMed]
  26. R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, "Demonstration of an optical quantum controlled-NOT gate without path interference," Phys. Rev. Lett. 95, 210506 (2005). [CrossRef] [PubMed]
  27. R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, "Quantum teleportation across the Danube," Nature 430, 849-849 (2004). [CrossRef] [PubMed]
  28. S. Giacomini, F. Sciarrino, E. Lombardi, and F. D. Martini, "Active teleportation of a quantum bit," Phys. Rev. A 66, 030302(R) (2002). [CrossRef]
  29. T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Demonstration of feed-forward control for linear optics quantum computation," Phys. Rev. A 66, 052305 (2002). [CrossRef]
  30. M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm, G. P. T. Lancaster, T. W. Körber, C. Becher, F. Schmidt-Kaler, D. F. V. James, and R. Blatt, "Deterministic quantum teleportation with atoms," Nature 429, 734-737 (2004). [CrossRef] [PubMed]
  31. M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, "Quantum teleportation with atomic qubits," Nature 429, 737-739 (2004). [CrossRef] [PubMed]
  32. L. M. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, "Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance," Nature 414, 883-887 (2001). [CrossRef]
  33. R. Prevedel, P. Walther, F. Tiefenbacher, P. Böhl, R. Kaltenbaek, T. Jennewein, and A. Zeilinger, "High-speed linear-optics quantum computing using active feed-forward," Nature (to be published).
  34. A. C.-C. Yao, "Some complelxity questions related to distributed computing," in Proceedings of the 11th Annual ACM Symposium on Theory of Computing (Association for Computing Machinery, 1979), pp. 209-213.
  35. A. C.-C. Yao, "Quantum circuit complexity," in Proceedings of the 34th Annual IEEE Symposium in Foundations of Computer Science (IEEE, 1993), pp. 352-361.
  36. R. Cleve and H. Buhrman, "Substituting quantum entanglement for communication," Phys. Rev. A 56, 1201-1204 (1997). [CrossRef]
  37. H. Buhrman, R. Cleve, and W. van Dam, "Quantum entanglement and communication complexity," arxiv.org e-print archive, quant-ph/9705033, May 18, 1997, http://arxiv.org/abs/quant-ph/9705033.
  38. C. Brukner, M. Zukowski, J.-W. Pan, and A. Zeilinger, "Bell's equalities and quantum communication complexity," Phys. Rev. Lett. 92, 127901 (2004). [CrossRef] [PubMed]
  39. C. Brukner, M. Zukowski, and A. Zeilinger, "Quantum communication complexity protocol with two entangled qutrits," Phys. Rev. Lett. 89, 197901 (2002). [CrossRef] [PubMed]
  40. C. Brukner, T. Paterek, and M. Zukowski, "Quantum communication complexity protocols based on higher-dimensional entangled systems," Int. J. Quantum Inf. 1, 519-525 (2003). [CrossRef]
  41. Strictly speaking, in communication complexity problems of Ref. each party i receives two one-bit inputs (xi,yi), and their goal is to compute a function of the form F(x1,y1,...,xn,yn)=y1∙···∙yn∙f(x1,...,xn). The values of the function f and the yi are ±1. Each party is allowed to broadcast only one bit of information (denoted as ei). For the present analysis, the existence of inputs yi is not of importance and is ommitted here. See Ref. for details.
  42. D. M. Greenberger, M. A. Horne, and A. Zeilinger, "Going beyond Bell's theorem," in Bell's Theorem, Quantum Theory, and Conceptions of the Universe, M.Kafatos, ed. (Kluwer, 1989), p. 69.
  43. E. F. Galvao, "Feasible quantum communication complexity protocol," Phys. Rev. A 65, 012318 (2002). [CrossRef]
  44. P. Trojek, C. Schmid, M. Bourennane, C. Brukner, M. Zukowski, and H. Weinfurter, "Experimental quantum communication complexity," Phys. Rev. A 72, 050305(R) (2005). [CrossRef]
  45. S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, "Experimental quantum cryptography with qutrits," New J. Phys. 8, 75 (2006). [CrossRef]
  46. M. Stütz, "Qutrit-manipulation mit aktiven Phasenhbologrammen," Master's thesis (University of Vienna, 2006).
  47. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000). [CrossRef] [PubMed]
  48. D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, "Entangled state quantum cryptography: eavesdropping on the Ekert protocol," Phys. Rev. Lett. 84, 4733-4736 (2000). [CrossRef] [PubMed]
  49. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000). [CrossRef] [PubMed]
  50. M. Zukowski, A. Zeilinger, and H. Weinfurter, "Entangling photons radiated by independent pulsed sources," Ann. N.Y. Acad. Sci. 755, 91-102 (1995). [CrossRef]
  51. T. Jennewein, G. Weihs, J.-W. Pan, and A. Zeilinger, "Experimental nonlocality proof of quantum teleportation and entanglement + swapping," Phys. Rev. Lett. 88, 017903 (2002). [CrossRef] [PubMed]
  52. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, "Quantum repeaters: the role of imperfect local operations in quantum communication," Phys. Rev. Lett. 81, 5932-5935 (1998). [CrossRef]
  53. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, "Purification of noisy entanglement and faithful teleportation via noise channels," Phys. Rev. Lett. 76, 722-725 (1996). [CrossRef] [PubMed]
  54. J.-W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, "Experimental entanglement purification," Nature 423, 417-422 (2003). [CrossRef] [PubMed]
  55. R. Kaltenbaek, B. Blauensteiner, M. Zukowski, M. Aspelmeyer, and A. Zeilinger, "Experimental interference of independent photons," Phys. Rev. Lett. 96, 240502 (2006). [CrossRef] [PubMed]
  56. J. E. Nordholt, R. Hughes, G. L. Morgan, C. G. Peterson, and C. C. Wipf, "Present and future free-space quantum key distribution," in Free-Space Laser Communication Technologies XIV, Proc. SPIE 4635, 116-126 (2002). [CrossRef]
  57. J. G. Rarity, P. R. Tapster, P. M. Gorman, and P. Knight, "Ground to satellite secure key exchange using quantum cryptography," New J. Phys. 4, 82 (2002). [CrossRef]
  58. M. Aspelmeyer, T. Jennewein, M. Pfennigbauer, W. R. Leeb, and A. Zeilinger, "Long-distance quantum communication with entangled photons using satellites," IEEE J. Sel. Top. Quantum Electron. 9, 1541-1551 (2003). [CrossRef]
  59. R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, "Practical free-space quantum key distribution over 10km in daylight and at night," New J. Phys. 4, 43 (2002). [CrossRef]
  60. J. Rarity, P. Tapster, and P. Gorman, "Secure free-space key exchange to 1.9km and beyond," J. Mod. Opt. 48, 1887-1901 (2001). [CrossRef]
  61. B. Jacobs and J. Franson, "Quantum cryptography in free space," Opt. Lett. 21, 1854-1856 (1996) [CrossRef] [PubMed]
  62. C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, "A step towards global key distribution," Nature 419, 450-450 (2002). [CrossRef] [PubMed]
  63. M. Aspelmeyer, H. R. Böhm, T. Gyatso, T. Jennewein, R. Kaltenbae, M. Lindenthal, G. Molina-Terriza, A. Poppe, K. Resch, M. Taraba, R. Ursin, P. Walther, and A. Zeilinger, "Long-distance free-space distribution of quantum entanglement," Science 301, 621-623 (2003). [CrossRef] [PubMed]
  64. K. Resch, M. Lindenthal, B. Blauensteiner, H. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, "Distributing entanglement and single photons through an intra-city, free-space quantum channel," Opt. Express 13, 202-209 (2005). [CrossRef] [PubMed]
  65. C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over 13km: towards satellite-based global quantum communication," Phys. Rev. Lett. 94, 150501 (2005). [CrossRef] [PubMed]
  66. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, "Free-space distribution of entanglement and single photons over 144km," arxiv.org e-print archive, quant-ph/0607182, July 27, 2006, http://arxiv.org/abs/quant-ph/0607182.
  67. M. Pfennigbauer, W. Leeb, G. Neckamm, M. Aspelmeyer, T. Jennewein, F. Tiefenbacher, A. Zeilinger, G. Baister, K. Kudielka, T. Dreischer, and H. Weinfurter, "Accommodation of a quantum communication transceiver in an optical terminal (ACCOM)," Technical Rep. ESTEC/Contract 17766/03/NL/PM (European Space Agency, 2005).
  68. R. Kaltenbaek, M. Aspelmeyer, T. Jennewein, C. Brukner, M. Pfennigbauer, W. R. Leeb, and A. Zeilinger, "Proof-of-concept experiments for quantum physics in space," in Quantum Communications and Quantum Imaging, R.Meyers and Y.Shih, eds. (SPIE, 2003), Vol. 5161, pp. 252-268.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited