Cavity-quantum-electrodynamics entangled photon source based on two truncated Rabi oscillations
JOSA B, Vol. 24, Issue 2, pp. 257-265 (2007)
http://dx.doi.org/10.1364/JOSAB.24.000257
Enhanced HTML Acrobat PDF (548 KB)
Abstract
We discuss a cavity-QED scheme to deterministically generate entangled photons pairs by using a three-level atom successively coupled to two single longitudinal mode high-Q cavities presenting polarization degeneracy. The first cavity is prepared in a well-defined Fock state with two photons with opposite circular polarizations while the second cavity remains in the vacuum state. Half of a resonant Rabi oscillation in each cavity transfers one photon from the first to the second cavity, leaving the photons entangled in their polarization degree of freedom. The feasibility of this implementation and some practical considerations are discussed for both microwave and optical regimes. In particular, Monte Carlo wave-function simulations have been performed with state-of-the-art parameter values to evaluate the success probability of the cavity-QED source in producing entangled photon pairs as well as its entanglement capability.
© 2007 Optical Society of America
OCIS Codes
(270.5290) Quantum optics : Photon statistics
(270.5580) Quantum optics : Quantum electrodynamics
ToC Category:
Entanglement
History
Original Manuscript: May 5, 2006
Revised Manuscript: July 27, 2006
Manuscript Accepted: September 11, 2006
Published: January 26, 2007
Citation
Rocío García-Maraver, Kai Eckert, Ramón Corbalán, and Jordi Mompart, "Cavity-quantum-electrodynamics entangled photon source based on two truncated Rabi oscillations," J. Opt. Soc. Am. B 24, 257-265 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-2-257
Sort: Year | Journal | Reset
References
- A. Aspect, P. Grangier, and G. Roger, "Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell's inequalities," Phys. Rev. Lett. 49, 91-94 (1982). [CrossRef]
- C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993). [CrossRef] [PubMed]
- C. H. Bennett and S. J. Wiesner, "Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states," Phys. Rev. Lett. 69, 2881-2884 (1992). [CrossRef] [PubMed]
- N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145195 (2002).
- M. Dusek, N. Lütkenhaus, and M. Hendrych, "Quantum cryptography," in Progress in Optics, Vol. XLIX, E.Wolf, ed. (Elsevier, 2006), pp. 381-442.
- C. H. Bennett and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, 1984), pp. 175-179.
- V. Scarani, A. Acn, G. Ribordy, and N. Gisin, "Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations," Phys. Rev. Lett. 92, 057901 (2004). [CrossRef] [PubMed]
- A. K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett. 67, 661-663 (1991). [CrossRef] [PubMed]
- A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, "Single photon quantum cryptography," Phys. Rev. Lett. 89, 187901 (2002). [CrossRef] [PubMed]
- T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000). [CrossRef] [PubMed]
- D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, "Entangled state quantum cryptography: eavesdropping on the Ekert protocol," Phys. Rev. Lett. 84, 4733-4736 (2000). [CrossRef] [PubMed]
- W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000). [CrossRef] [PubMed]
- D. L. Zhou, B. Sun, C. P. Sun, and L. You, "Generating entangled photon pairs from a cavity-QED system," Phys. Rev. A 72, 040302 (2005). [CrossRef]
- L. Ye, L. B. Yu, and G. C. Guo, "Generation of entangled states in cavity QED," Phys. Rev. A 72, 034304 (2005). [CrossRef]
- N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, and D. Gershoni, "Entangled photon pairs from semiconductor quantum dots," Phys. Rev. Lett. 96, 130501 (2006). [CrossRef] [PubMed]
- R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006). [CrossRef] [PubMed]
- A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, "Step-by-step engineered multiparticle entanglement," Science 288, 2024-2028 (2000). [CrossRef] [PubMed]
- H. Walther, "Generation of photon number states on demand," Fortschr. Phys. 51, 521-530 (2003). [CrossRef]
- G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, "Measurement of ultralow losses in an optical interferometer," Opt. Lett. 17, 363-365 (1992). [CrossRef] [PubMed]
- Y. Shimizu, N. Shiokawa, N. Yamamoto, M. Kozuma, T. Kuga, L. Deng, and E. W. Hagley, "Control of light pulse propagation with only a few cold atoms in a high-finesse microcavity," Phys. Rev. Lett. 89, 233001 (2002). [CrossRef] [PubMed]
- R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, and H. J. Kimble, "Trapped atoms in cavity QED: coupling quantized light and matter," J. Phys. B 38, S551-S556 (2005). [CrossRef]
- G. T. Foster, S. L. Mielke, and L. A. Orozco, "Intensity correlations in cavity QED," Phys. Rev. A 61, 053821 (2000). [CrossRef]
- T. Legero, T. Wilk, M. Hennrich. G. Rempe, and A. Kuhn, "Quantum beat of two single photons," Phys. Rev. Lett. 93, 070503 (2004). [CrossRef] [PubMed]
- G. Morigi, J. Eschner, S. Mancini, and D. Vitali, "Entangled light pulses from single cold atoms," Phys. Rev. Lett. 96, 023601 (2006). [CrossRef] [PubMed]
- A. Kuhn, M. Henrich, and G. Rempe, "Deterministic single-photon source for distributed quantum networking," Phys. Rev. Lett. 89, 067901 (2002). [CrossRef] [PubMed]
- E. Arimondo, "Coherent population trapping in laser spectroscopy," Prog. Opt. 35, 257-354 (1996). [CrossRef]
- Y. R. Shen, The Principles of Non-Linear Optics (Wiley-Interscience, 1984).
- J. Dalibard, Y. Castin, and K. Mølmer, "Wave-function approach to dissipative processes in quantum optics," Phys. Rev. Lett. 68, 580-583 (1992). [CrossRef] [PubMed]
- J. F. Clauser, M. A. Home, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1969). [CrossRef]
- M. Takamoto and H. Katori, "Spectroscopy of the ^{1}S_{0}^{3}P_{0} clock transition of ^{87}Sr in an optical lattice," Phys. Rev. Lett. 91, 223001 (2003). [CrossRef] [PubMed]
- G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, and G. M. Tino, "Precision frequency measurement of visible intercombination lines of strontium," Phys. Rev. Lett. 91, 243002 (2003). [CrossRef] [PubMed]
- H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, "Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature," Phys. Rev. Lett. 82, 1116-1119 (1999). [CrossRef]
- B. T. H. Varcoe, S. Brattke, and H. Walther, "Generation of Fockstates in the micromaser," J. Opt. B Quantum Semiclassical Opt. 2, 154-157 (2000). [CrossRef]
- T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, J. McKeever, R. Miller, and H. J. Kimble, in Atomic Physics 19, L.G.Marcassa, V.S.Bagnato, and K.Helmerson, eds. (American Institute of Physics, 2004), Vol. 770, pp. 313-314.
- J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, "Cavity QED with optically transported atoms," Phys. Rev. A 69, 051804 (2004). [CrossRef]
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article | Next Article »
OSA is a member of CrossRef.