OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 2 — Feb. 1, 2007
  • pp: 266–269

Generation and verification of high-dimensional entanglement from coupled-cavity arrays

Dimitris G. Angelakis and Sougato Bose  »View Author Affiliations

JOSA B, Vol. 24, Issue 2, pp. 266-269 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (239 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show how coupled cavities can be used to produce high-dimensional entangled states of electromagnetic fields. We also show how such an entangled state can be verified by mapping the entangled fields to atoms or quantum dots in the defects. We propose this as a source of high dimensional entangled states on demand and suggest ways to implement it using coupled defects in photonic crystals or coupled toroidal microcavities.

© 2007 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(270.1670) Quantum optics : Coherent optical effects

ToC Category:

Original Manuscript: May 12, 2006
Revised Manuscript: August 18, 2006
Manuscript Accepted: September 26, 2006
Published: January 26, 2007

Dimitris G. Angelakis and Sougato Bose, "Generation and verification of high-dimensional entanglement from coupled-cavity arrays," J. Opt. Soc. Am. B 24, 266-269 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," in Proceedings of IEEE International Conference on Computers Systems and Signal Processing, (IEEE, 1984), pp. 175-179.
  2. A. K. Ekert, "Quantum cryptography based on Bells theorem," Phys. Rev. Lett. 67, 661-663 (1991). [CrossRef] [PubMed]
  3. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995). [CrossRef] [PubMed]
  4. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eible, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-579 (1997). [CrossRef]
  5. S. L. Braunstein and H. J. Kimble, "Teleportation of continuous quantum variables," Phys. Rev. Lett. 80, 869-872 (1998). [CrossRef]
  6. J. C. Howell, A. Lamas-Linares, and D. Bouwmeester, "Experimental violation of a spin-1 Bell inequality using maximally entangled four-photon states," Phys. Rev. Lett. 88, 030401 (2002). [CrossRef] [PubMed]
  7. P. D. Drummond, "Violations of Bell's inequality in cooperative states," Phys. Rev. Lett. 50, 1407-1410 (1983). [CrossRef]
  8. M. D. Reid, W. J. Munro, and F. De Martini, "Violation of multiparticle Bell inequalities for low- and high-flux parametric amplification using both vacuum and entangled input states," Phys. Rev. A 66, 033801 (2002). [CrossRef]
  9. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, "Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics," Phys. Rev. A 71, 013817 (2005). [CrossRef]
  10. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2001). [CrossRef]
  11. C. J. M. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. F. Krauss, R. M. De La Rue, and C. Weisbuch, "Near-infrared microcavities confined by two-dimensional photonic bandgap crystals," Electron. Lett. 35, 228-229 (1999). [CrossRef]
  12. M. S. Skolnick, V. N. Astratov, D. M. Whittaker, A. Armitage, M. Emam-Ismail, R. M. Stevenson, J. J. Baumberg, J. S. Roberts, D. G. Lidzey, T. Virgili, and D. C. C. Bradley, "Exciton polaritons in single and coupled microcavities," J. Lumin. 87, 25-29 (2000). [CrossRef]
  13. K. Hennessy, C. Reese, A. Badolato, C. F. Wang, A. Imamolu, P. M. Petroff, E. Hu, G. Jin, S. Shi, and D. W. Prather, "Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots," Appl. Phys. Lett. 83, 3650-3652 (2003). [CrossRef]
  14. E. Waks and J. Vuckovic, "Dipole induced transparency in drop-filter cavity-waveguide systems," Phys. Rev. Lett. 96, 153601 (2006). [CrossRef] [PubMed]
  15. A. S. Parkins, P. Marte, P. Zoller, O. Carnal, and H. J. Kimble, "Quantum-state mapping between multilevel atoms and cavity light fields," Phys. Rev. A 51, 1578-1596 (1995). [CrossRef] [PubMed]
  16. D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, "Bell inequalities for arbitrarily high-dimensional systems," Phys. Rev. Lett. 88, 040404 (2002). [CrossRef] [PubMed]
  17. D. Kaszlikowski, L. C. Kwek, J.-L. Chen, M. Zukowski, and C. H. Oh, "Clauser-Horne inequality for three state systems," Phys. Rev. A 65, 032118 (2002). [CrossRef]
  18. W. Hansel, P. Hommelhoff, T. W. Hansch, and J. Reichel, "Bose-Einstein condensation on a microelectronic chip," Nature 413, 498-501 (2001). [CrossRef] [PubMed]
  19. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  20. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  21. C. M. Soukoulis, Photonic Crystal and Light Localization in the 21st Century (Kluwer, 2001).
  22. N. Stefanou and A. Modinos, "Impurity bands in photonic insulators," Phys. Rev. B 57, 12127-12133 (1998). [CrossRef]
  23. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide a proposal and analysis," Opt. Lett. 24, 711-713 (1999). [CrossRef]
  24. D. G. Angelakis, M. F. Santos, V. Yannopapas, and A. Ekert, "Quantum computation in photonic crystals," http://arxiv.org/abs/quant-ph 0410189 (2004).
  25. D. G. Angelakis, M. F. Santos, S. Bose, and A. Ekert, "Mott transitions in coupled cavity arrays," http://arxiv.org.abs/quant-ph/06061159.
  26. D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vuckovic, "Generation and transfer of single photons on a photonic crystal chip," arXiv, quant-ph/0609053.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited