OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 2 — Feb. 1, 2007
  • pp: 283–294

Creation of entanglement and implementation of quantum logic gate operations using a three-dimensional photonic crystal single-mode cavity

Durdu Ö. Güney and David A. Meyer  »View Author Affiliations

JOSA B, Vol. 24, Issue 2, pp. 283-294 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1704 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We solve the Jaynes–Cummings Hamiltonian with time-dependent coupling parameters under the dipole and rotating-wave approximations for a three-dimensional photonic crystal (PC) single-mode cavity with a sufficiently high-quality Q factor. We then exploit the results to show how to create a maximally entangled state of two atoms and how to implement several quantum logic gates: a dual-rail Hadamard gate, a dual-rail NOT gate, and a SWAP gate. The atoms in all of these operations are syncronized, which is not the case in previous studies of PCs [ J. Mod. Opt. 48, 1495 (2001) ; Eur. Phys. J. D 10, 285 (2000) ; Eur. Phys. J. D 18, 247 (2002) ]. Our method has the potential for extension to N-atom entanglement, universal quantum logic operations, and the implementation of other useful, cavity QED-based quantum information processing tasks.

© 2007 Optical Society of America

OCIS Codes
(020.5580) Atomic and molecular physics : Quantum electrodynamics
(200.4660) Optics in computing : Optical logic
(220.4830) Optical design and fabrication : Systems design
(230.5750) Optical devices : Resonators
(270.5580) Quantum optics : Quantum electrodynamics

ToC Category:

Original Manuscript: April 28, 2006
Revised Manuscript: August 7, 2006
Manuscript Accepted: August 27, 2006
Published: January 26, 2007

Durdu Ö. Güney and David A. Meyer, "Creation of entanglement and implementation of quantum logic gate operations using a three-dimensional photonic crystal single-mode cavity," J. Opt. Soc. Am. B 24, 283-294 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Nielsen and I. L. Chuang, Quantum Information and Quantum Computing (Cambridge U. Press, 2000).
  2. C. M. Soukoulis, "The history and a review of the modelling and fabrication of photonic crystals," Nanotechnology 13, 420-423 (2002). [CrossRef]
  3. E. Yablonovitch, "Photonic crystals," J. Mod. Opt. 41, 173-194 (1994). [CrossRef]
  4. E. Özbay, Nanotechnology Research Center, Bilkent University, Ankara, Turkey, 06800 (personal communication, 2006).
  5. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A three-dimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004). [CrossRef] [PubMed]
  6. N. Vats and T. Rudolph, "Quantum information processing in localized modes of light within a photonic bandgap material," J. Mod. Opt. 48, 1495-1502 (2001). [CrossRef]
  7. M. Konopka and V. Buzek, "Entangling atoms in photonic crystals," Eur. Phys. J. D 10, 285-293 (2000). [CrossRef]
  8. S. John and J. Wang, "Quantum optics of localized light in a photonic band gap," Phys. Rev. B 43, 12772-12789 (1991). [CrossRef]
  9. J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, 1994).
  10. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).
  11. M. Tavis and F. W. Cummings, "Exact solution for N-molecule-radiation field Hamiltonian," Phys. Rev. 170, 379-384 (1968). [CrossRef]
  12. T. B. Pittman and J. D. Franson, "Cyclical quantum memory for photonic qubits," Phys. Rev. A 66, 062302-062305 (2002). [CrossRef]
  13. D. G. Angelakis and P. L. Knight, "Testing Bell inequalities in photonic crystals," Eur. Phys. J. D 18, 247-250 (2002). [CrossRef]
  14. E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, "Generation of Einstein-Podolsky-Rosen pairs of atoms," Phys. Rev. Lett. 79, 1-5 (1997). [CrossRef]
  15. P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency," Phys. Rev. B 54, 7837-7842 (1996). [CrossRef]
  16. J. Vuckovic, Ginzton Laboratory, Stanford University, Stanford, Calif. 94305 (personal communication, 2004).
  17. H. J. Kimble, "Strong interactions of single atoms and photons in cavity QED," Phys. Scr. T76, 127-137 (1998). [CrossRef]
  18. S. Haroche and J. M. Raimond, "Manipulation of nonclassical field states," in Cavity Electrodynamics, P.Berman, ed. (Academic, 1994), pp. 126-127.
  19. Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics (Wiley-Interscience, 1999).
  20. R. J. Glauber and M. Lewenstein, "Quantum optics of dielectric media," Phys. Rev. A 43, 467-491 (1991). [CrossRef] [PubMed]
  21. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a plane-wave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  22. S. G. Johnson and J. D. Joannopoulos, "Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap," Appl. Phys. Lett. 77, 3490-3492 (2000). [CrossRef]
  23. M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, "Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap," Phys. Rev. B 64, 075313-075320 (2001). [CrossRef]
  24. S. Fan, P. R. Villeneuve, R. D. Meade, and J. D. Joannopoulos, "Design of three-dimensional photonic crystals at submicron lengthscales," Appl. Phys. Lett. 65, 1466-1468 (1994). [CrossRef]
  25. K. H. Dridi, "Intrinsic eigenstate spectrum of planar multilayer stacks of two-dimensional photonic crystals," Opt. Express 11, 1156-1165 (2003). [CrossRef] [PubMed]
  26. K. H. Dridi, "Mode dispersion and photonic storage in planar defects within Bragg stacks of photonic crystal slabs," J. Opt. Soc. Am. B 21, 522-530 (2004). [CrossRef]
  27. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608-016618 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited