OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 2 — Feb. 1, 2007
  • pp: 295–299

Quantum transduction via frequency upconversion (Invited)

Aaron P. VanDevender and Paul G. Kwiat  »View Author Affiliations

JOSA B, Vol. 24, Issue 2, pp. 295-299 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (220 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a method for efficiently and coherently converting photons from one wavelength to another through the process of nonlinear upconversion. By using an intense 1064 nm escort laser pulse and a periodically poled lithium niobate (PPLN) crystal, we demonstrate upconversion efficiency of 99% and coherence of 95% for 1550 to 631 nm light at the single-photon level, thereby qualifying it for use in manipulation of photonic qubits. We then show how to create photons in arbitrary superpositions of different energy states, thereby enlarging the accessible Hilbert space for quantum information applications.

© 2007 Optical Society of America

OCIS Codes
(190.7220) Nonlinear optics : Upconversion
(270.1670) Quantum optics : Coherent optical effects

ToC Category:

Original Manuscript: September 22, 2006
Revised Manuscript: October 13, 2006
Manuscript Accepted: October 15, 2006
Published: January 26, 2007

Aaron P. VanDevender and Paul G. Kwiat, "Quantum transduction via frequency upconversion (Invited)," J. Opt. Soc. Am. B 24, 295-299 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962). [CrossRef]
  2. G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968). [CrossRef]
  3. J. E. Midwinter, "Image conversion from 1.6 μm to the visible in lithium niobate," Appl. Phys. Lett. 12, 68-70 (1968). [CrossRef]
  4. K. F. Hulme and J. Warner, "Theory of thermal imaging using infrared to visible image up-conversion," Appl. Opt. 11, 2956-2964 (1972). [CrossRef] [PubMed]
  5. T. R. Gurski, H. W. Epps, and S. P. Maran, "Upconversion of broadband infrared spectra," Appl. Opt. 17, 1238-1242 (1978). [CrossRef] [PubMed]
  6. R. Schanz, S. A. Kovalenko, V. Kharlanov, and N. P. Ernsting, "Broad-band fluorescence upconversion for femtosecond spectroscopy," Appl. Phys. Lett. 79, 566-568 (2001). [CrossRef]
  7. J. Warner, "Spatial resolution measurements in up-conversion from 10.6 μm to the visible," Appl. Phys. Lett. 13, 360-362 (1968). [CrossRef]
  8. F. V. Bright, "Modern molecular fluorescence spectroscopy," Appl. Spectrosc. 49, 14A-19A (1995). [CrossRef]
  9. M. M. Abbas, T. Kostiuk, and K. W. Ogilvie, "Infrared upconversion for astronomical applications," Appl. Opt. 15, 961-970 (1976). [CrossRef] [PubMed]
  10. R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, "Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths," Opt. Lett. 29, 1518-1520 (2004). [CrossRef] [PubMed]
  11. M. A. Albota and F. N. C. Wong, "Efficient single-photon counting at 1.55 μm by means of frequency upconversion," Opt. Lett. 29, 1449-1451 (2004). [CrossRef] [PubMed]
  12. G. Giorgi, P. Mataloni, and F. De Martini, "Frequency hopping in quantum interferometry: efficient up-down conversion for qubits and ebits," Phys. Rev. Lett. 90, 027902 (2003). [CrossRef] [PubMed]
  13. K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, "Detection of mid-IR radiation by sum frequency generation for free space optical communication," Opt. Lasers Eng. 43, 537-544 (2005). [CrossRef]
  14. A. P. VanDevender and P. G. Kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt. 51, 1433-1445 (2004). [CrossRef]
  15. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, and M. M. Fejer, "Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides," Opt. Lett. 30, 1725-1727 (2005). [CrossRef] [PubMed]
  16. K. Inoue, E. Waks, and Y. Yamamoto, "Differential phase shift quantum key distribution," Phys. Rev. Lett. 89, 037902 (2002). [CrossRef] [PubMed]
  17. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge U. Press, 2000).
  18. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002). [CrossRef]
  19. J. Huang and P. Kumar, "Observation of quantum frequency conversion," Phys. Rev. Lett. 68, 2153-2156 (1992). [CrossRef] [PubMed]
  20. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, "A photonic quantum information interface," Nature 437, 116-120 (2005). [CrossRef] [PubMed]
  21. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12, 2102-2116 (1995). [CrossRef]
  22. D. T. Pegg and J. Jeffers, "Quantum nature of laser light," J. Mod. Opt. 52, 1835-1856 (2005). [CrossRef]
  23. R. J. Hughes, G. L. Morgan, and C. G. Peterson, "Quantum key distribution over a 48-km optical fiber network," J. Mod. Opt. 47, 533-547 (2000). [CrossRef]
  24. D. Stucki, N. G. O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug&play system," New J. Phys. 4, 41.1-41.8 (2002). [CrossRef]
  25. See MagiQ Technologies at http://www.magiqtech.com/.
  26. See id Quantique at http://www.idquantique.com/.
  27. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, "Generation of hyperentangled photon pairs," Phys. Rev. Lett. 95, 260501 (2005). [CrossRef]
  28. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, "Quantum secure direct communication with high-dimension quantum superdense coding," Phys. Rev. A 71, 044305 (2005). [CrossRef]
  29. D. A. Farías and J. N. Eckstein, "Dynamic electrooptic frequency shifter for pulsed light signals," IEEE J. Quantum Electron. 41, 94-99 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited