OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 2 — Feb. 1, 2007
  • pp: 324–334

From quantum cloning to quantum key distribution with continuous variables: a review (Invited)

Nicolas J. Cerf and Philippe Grangier  »View Author Affiliations


JOSA B, Vol. 24, Issue 2, pp. 324-334 (2007)
http://dx.doi.org/10.1364/JOSAB.24.000324


View Full Text Article

Enhanced HTML    Acrobat PDF (537 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Quantum information processing with continuous variables is a paradigm that has attracted a growing interest over the past years, partly as a consequence of the prospects for high-rate quantum communication systems based on standard optical telecommunication components. In this overview article, we introduce the concept of quantum continuous variables in optics and then turn to the fundamental impossibility of cloning continuous-variable light states, a result that lies at the heart of quantum key distribution. Then we present state-of-the-art quantum key distribution systems relying on continuous variables, focusing mainly on the protocols using Gaussian-modulated coherent light states and emphasizing the current experimental demonstration of these systems. Finally, we briefly review recent security proofs of these cryptographic protocols.

© 2007 Optical Society of America

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2920) Fiber optics and optical communications : Homodyning
(270.5570) Quantum optics : Quantum detectors

ToC Category:
Continuous Variable

History
Original Manuscript: October 4, 2006
Revised Manuscript: October 17, 2006
Manuscript Accepted: October 17, 2006
Published: January 26, 2007

Citation
Nicolas J. Cerf and Philippe Grangier, "From quantum cloning to quantum key distribution with continuous variables: a review (Invited)," J. Opt. Soc. Am. B 24, 324-334 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-2-324


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. L. Braunstein and A. K. Pati, eds., Quantum Information with Continuous Variables (Kluwer Academic, 2003).
  2. N. J. Cerf, G. Leuchs, and E. S. Polzik, eds., Quantum Information with Continuous Variables of Atoms and Light (Imperial College, 2006).
  3. A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, "Unconditional quantum teleportation," Science 282, 706-709 (1998). [CrossRef] [PubMed]
  4. B. Julsgaard, A. Kozhekin, and E. S. Polzik, "Experimental long-lived entanglement of two macroscopic objects," Nature 413, 400-403 (2001). [CrossRef] [PubMed]
  5. B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004). [CrossRef] [PubMed]
  6. U. L. Andersen, O. Glöckl, S. Lorenz, G. Leuchs, and R. Filip, "Experimental demonstration of continuous variable quantum erasing," Phys. Rev. Lett. 93, 100403 (2004). [CrossRef] [PubMed]
  7. U. L. Andersen, V. Josse, and G. Leuchs, "Unconditional quantum cloning of coherent states with linear optics," Phys. Rev. Lett. 94, 240503 (2005). [CrossRef]
  8. F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, "Quantum key distribution using gaussian-modulated coherent states," Nature 421, 238-241 (2003). [CrossRef] [PubMed]
  9. L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, "Inseparability criterion for continuous variable systems," Phys. Rev. Lett. 84, 2722-2725 (2000). [CrossRef] [PubMed]
  10. R. Simon, "Peres-Horodecki separability criterion for continuous variable systems," Phys. Rev. Lett. 84, 2726-2729 (2000). [CrossRef] [PubMed]
  11. J. Eisert, S. Scheel, and M. B. Plenio, "On the impossibility of distilling Gaussian states with Gaussian operations," Phys. Rev. Lett. 89, 137903 (2002). [CrossRef] [PubMed]
  12. P. Horodecki and M. Lewenstein, "Bound entanglement and continuous variables," Phys. Rev. Lett. 85, 2657-2660 (2000). [CrossRef] [PubMed]
  13. R. F. Werner and M. M. Wolf, "Bound entangled Gaussian states," Phys. Rev. Lett. 86, 3658-3661 (2001). [CrossRef] [PubMed]
  14. N. J. Cerf, A. Ipe, and X. Rottenberg, "Cloning of continuous quantum variables," Phys. Rev. Lett. 85, 1754-1757 (2000). [CrossRef] [PubMed]
  15. N. J. Cerf, M. Lévy, and G. Van Assche, "Quantum distribution of Gaussian keys using squeezed states," Phys. Rev. A 63, 052311 (2001). [CrossRef]
  16. F. Grosshans and P. Grangier, "Continuous variable quantum cryptography using coherent states," Phys. Rev. Lett. 88, 057902 (2002). [CrossRef] [PubMed]
  17. T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and S. Glancy, "Quantum computation with optical coherent states," Phys. Rev. A 68, 042319 (2003). [CrossRef]
  18. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, "Linear optical quantum computing," arXiv:quant-ph/0512071 (2005).
  19. N. J. Cerf and S. Iblisdir, "Optimal N-to-M cloning of conjugate quantum variables," Phys. Rev. A 62, 040301(R) (2000). [CrossRef]
  20. S. L. Braunstein, N. J. Cerf, S. Iblisdir, P. van Loock, and S. Massar, "Optimal cloning of coherent states with a linear amplifier and beam splitters," Phys. Rev. Lett. 86, 4938-4941 (2001). [CrossRef] [PubMed]
  21. J. Fiurasek, "Optical implementation of continuous-variable quantum cloning machines," Phys. Rev. Lett. 86, 4942-4945 (2001). [CrossRef] [PubMed]
  22. D. Gottesman and J. Preskill, "Secure quantum key distribution using squeezed states," Phys. Rev. A 63, 022309 (2001). [CrossRef]
  23. M. Hillery, "Quantum cryptography with squeezed states," Phys. Rev. A 61, 022309 (2000). [CrossRef]
  24. T. C. Ralph, "Continuous variable quantum cryptography," Phys. Rev. A 61, 010303(R) (2000). [CrossRef]
  25. M. D. Reid, "Quantum cryptography with a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations," Phys. Rev. A 62, 062308 (2000). [CrossRef]
  26. K. Bencheikh, Th. Symul, A. Jankovic, and J. A. Levenson, "Quantum key distribution with continuous variables," J. Mod. Opt. 48, 1903-1920 (2001). [CrossRef]
  27. Ch. Silberhorn, N. Korolkova, and G. Leuchs, "Quantum key distribution with bright entangled beams," Phys. Rev. Lett. 88, 167902 (2002). [CrossRef] [PubMed]
  28. A. C. Funk and M. G. Raymer, "Quantum key distribution using nonclassical photon-number correlations in macroscopic light pulses," Phys. Rev. A 65, 042307 (2002). [CrossRef]
  29. J. Jing, Q. Pan, C. Xie, and K. Peng, "Quantum cryptography using Einstein-Podolsky-Rosen correlations of continuous variables," arXiv.org:quant-ph/0204111 (2002).
  30. F. Grosshans and P. Grangier, "Reverse reconciliation protocols for quantum cryptography with continuous variables," arXiv:quant-ph/0204127 (2002).
  31. C. Silberhorn, T. C. Ralph, N. Lütkenhaus, and G. Leuchs, "Continuous variable quantum cryptography: beating the 3 dB loss limit," Phys. Rev. Lett. 89, 167901 (2002). [CrossRef] [PubMed]
  32. S. Lorenz, N. Korolkova, and G. Leuchs, "Continuous-variable quantum key distribution using polarization encoding and post selection," Appl. Phys. B 79, 273-277 (2004). [CrossRef]
  33. R. Namiki and T. Hirano, "Security of quantum cryptography using balanced homodyne detection," Phys. Rev. A 67, 022308 (2003). [CrossRef]
  34. T. Hirano, H. Yamanaka, M. Ashikaga, I. Konishi, and R. Namiki, "Quantum cryptography using pulsed homodyne detection," Phys. Rev. A 68, 042331 (2003). [CrossRef]
  35. R. Namiki and T. Hirano, "Practical limitation for continuous-variable quantum cryptography using coherent states," Phys. Rev. Lett. 92, 117901 (2004). [CrossRef] [PubMed]
  36. R. Namiki and T. Hirano, "Security of continuous-variable quantum cryptography using coherent states: decline of postselection advantage," Phys. Rev. A 72, 024301 (2005). [CrossRef]
  37. M. Heid and N. Lütkenhaus, "Efficiency of coherent-state quantum cryptography in the presence of loss: influence of realistic error correction," Phys. Rev. A 73, 052316 (2006). [CrossRef]
  38. M. Curty, M. Lewenstein, and N. Lütkenhaus, "Entanglement as a precondition for secure quantum key distribution," Phys. Rev. Lett. 92, 217903 (2004). [CrossRef] [PubMed]
  39. M. Curty, O. Gühne, M. Lewenstein, and N. Lütkenhaus, "Detecting two-party quantum correlations in quantum-key-distribution protocols," Phys. Rev. A 71, 022306 (2005). [CrossRef]
  40. M. Heid and N. Lütkenhaus, "Security of coherent state quantum cryptography in the presence of Gaussian noise," arXiv:quant-ph/0608015 (2006).
  41. Ch. Weedbrook, A. M. Lance, W. P. Bowen, Th. Symul, T. C. Ralph, and P. K. Lam, "Quantum cryptography without switching," Phys. Rev. Lett. 93, 170504 (2004). [CrossRef] [PubMed]
  42. Ch. Weedbrook, A. M. Lance, W. P. Bowen, Th. Symul, T. C. Ralph, and P. K. Lam, "Coherent-state quantum key distribution without random basis switching," Phys. Rev. A 73, 022316 (2006). [CrossRef]
  43. A. M. Lance, T. Symul, V. Sharma, C. Weedbrook, T. C. Ralph, and P. K. Lam, "No-switching quantum key distribution using broadband modulated coherent light," Phys. Rev. Lett. 95, 180503 (2005). [CrossRef] [PubMed]
  44. G. A. Barbosa, E. Corndorf, and P. Kumar, "Quantum cryptography with coherent-state light: demonstration of a secure data encryption scheme operating at 100 kb/s," in Quantum Electronics and Laser Science (QELS), Vol. 74 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), pp. 189-190.
  45. J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, "Controlling excess noise in fiber-optics continuous-variable quantum key distribution," Phys. Rev. A 72, 050303(R) (2005). [CrossRef]
  46. F. Grosshans and N. J. Cerf, "Continuous-variable quantum cryptography is secure against non-Gaussian attacks," Phys. Rev. Lett. 92, 047905 (2004). [CrossRef] [PubMed]
  47. G. Van Assche, J. Cardinal, and N. J. Cerf, "Reconciliation of a quantum-distributed Gaussian key," IEEE Trans. Inf. Theory 50, 394-400 (2004). [CrossRef]
  48. M. Bloch, A. Thangaraj, and S. W. McLaughlin, "Efficient reconciliation of correlated continuous random variables using LDPC codes," arXiv:cs.IT/0509041 (2005).
  49. R. Renner, "Security of quantum key distribution," Ph.D. thesis (ETH Zurich2005).
  50. Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, "Experimental quantum key distribution with decoy states," Phys. Rev. Lett. 96, 070502 (2006). [CrossRef] [PubMed]
  51. E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, "Performance of various quantum-key-distribution systems using 1.55-μm up-conversion single-photon detectors," Phys. Rev. A 72, 052311 (2005). [CrossRef]
  52. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8, 32 (2006). [CrossRef]
  53. J. C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lu, D. H. Su, C. W. Clark, C. J. Williams, E. W. Hagley, and J. Wen, "Quantum key distribution with 1.25 Gbps clock synchronization," Opt. Express 12, 2011-2016 (2004). [CrossRef] [PubMed]
  54. K. J. Gordon, V. Fernandez, G. S. Buller, I. Rech, S. D. Cova, and P. D. Townsend, "Quantum key distribution system clocked at 2 GHz," Opt. Express 13, 3015-3020 (2005). [CrossRef] [PubMed]
  55. M. Legré, H. Zbinden, and N. Gisin, "Implementation of continuous variable quantum cryptography in optical fibres using a go-&-return configuration," Quantum Inf. Comput. 6, 326-335 (2006).
  56. F. Grosshans, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier, "Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables," Quantum Inf. Comput. 3, 535-552 (2003).
  57. P. Grangier, J.-A. Levenson, and J.-Ph. Poizat, "Quantum demolition measurements in optics," Nature 396, 537-542 (1998). [CrossRef]
  58. S. Iblisdir, G. Van Assche, and N. J. Cerf, "Security of quantum key distribution with coherent states and homodyne detection," Phys. Rev. Lett. 93, 170502 (2004). [CrossRef] [PubMed]
  59. G. Van Assche, S. Iblisdir, and N. J. Cerf, "Secure coherent-state quantum key distribution protocols with efficient reconciliation," Phys. Rev. A 71, 052304 (2005). [CrossRef]
  60. M. Navascués, J. Bae, J. I. Cirac, M. Levenstein, A. Sapera, and A. Acín, "Quantum key distillation from Gaussian states by Gaussian operations," Phys. Rev. Lett. 94, 010502 (2005). [CrossRef] [PubMed]
  61. F. Grosshans, "Collective attacks and unconditional security in continuous variable quantum key distribution," Phys. Rev. Lett. 94, 020504 (2005). [CrossRef] [PubMed]
  62. M. Navascués and A. Acín, "Security bounds for continuous variables quantum key distribution," Phys. Rev. Lett. 94, 020505 (2005). [CrossRef] [PubMed]
  63. I. Devetak and A. Winter, "Relating quantum privacy and quantum coherence: an operational approach," Phys. Rev. Lett. 93, 080501 (2004). [CrossRef] [PubMed]
  64. R. García-Patrón and N. J. Cerf, "Unconditional optimality of Gaussian attacks against continuous-variable QKD," Phys. Rev. Lett. 97, 190503 (2006). [CrossRef] [PubMed]
  65. M. Navascués, F. Grosshans, and A. Acín, "Optimality of Gaussian attacks in continuous variable quantum cryptography," Phys. Rev. Lett. 97, 190502 (2006). [CrossRef] [PubMed]
  66. See http://www.secoqc.net/.
  67. J. Wenger, R. Brouri, and P. Grangier, "Non-Gaussian statistics from individual pulses of squeezed light," Phys. Rev. Lett. 92, 153601 (2004). [CrossRef] [PubMed]
  68. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, "Generating optical Schrödinger kittens for quantum information processing," Science 312, 83-86 (2006). [CrossRef] [PubMed]
  69. J. S. Neergaard-Nielsen, B. Melholt Nielsen, C. Hettich, K. Moelmer, and E. S. Polzik, "Generation of a superposition of odd photon number states for quantum information networks," Phys. Rev. Lett. 97, 083604 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited