OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 2 — Feb. 1, 2007
  • pp: 335–339

Bichromatic local oscillator for detection of two-mode squeezed states of light

Alberto M. Marino, C. R. Stroud, Jr., Vincent Wong, Ryan S. Bennink, and Robert W. Boyd  »View Author Affiliations


JOSA B, Vol. 24, Issue 2, pp. 335-339 (2007)
http://dx.doi.org/10.1364/JOSAB.24.000335


View Full Text Article

Enhanced HTML    Acrobat PDF (105 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new technique for the detection of two-mode squeezed states of light that allows for a simple characterization of these quantum states even for arbitrary frequency separation between the modes. The proposed technique is based on the use of a bichromatic field as the local oscillator in a balanced heterodyne measurement scheme. By the proper selection of the frequencies of the bichromatic field, it is possible to arbitrarily select the frequency around which the squeezing information is located, thus making it possible to use a low-bandwidth detection system and to move away from any excess noise present in the system.

© 2007 Optical Society of America

OCIS Codes
(040.2840) Detectors : Heterodyne
(270.5570) Quantum optics : Quantum detectors
(270.6570) Quantum optics : Squeezed states

ToC Category:
Continuous Variable

History
Original Manuscript: August 18, 2006
Revised Manuscript: October 4, 2006
Manuscript Accepted: October 5, 2006
Published: January 26, 2007

Citation
Alberto M. Marino, C. R. Stroud, Jr., Vincent Wong, Ryan S. Bennink, and Robert W. Boyd, "Bichromatic local oscillator for detection of two-mode squeezed states of light," J. Opt. Soc. Am. B 24, 335-339 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-2-335


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Einstein, B. Podolsky, and N. Rosen, "Can quantum-mechanical description of physical reality be considered complete?" Phys. Rev. 47, 777-780 (1935). [CrossRef]
  2. A. M. Marino and C. R. Stroud, Jr., "Deterministic secure communications using two-mode squeezed states," Phys. Rev. A 74, 022315 (2006). [CrossRef]
  3. S. L. Braunstein and H. J. Kimble, "Teleportation of continuous quantum variables," Phys. Rev. Lett. 80, 869-872 (1998). [CrossRef]
  4. A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, "Unconditional quantum teleportation," Science 282, 706-709 (1998). [CrossRef] [PubMed]
  5. S. F. Pereira, Z. Y. Ou, and H. J. Kimble, "Quantum communication with correlated nonclassical states," Phys. Rev. A 62, 042311 (2000). [CrossRef]
  6. M. D. Reid, "Quantum cryptography with a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations," Phys. Rev. A 62, 062308 (2000). [CrossRef]
  7. C. Silberhorn, N. Korolkova, and G. Leuchs, "Quantum key distribution with bright entangled beams," Phys. Rev. Lett. 88, 167902 (2002). [CrossRef] [PubMed]
  8. M. D. Reid, "Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification," Phys. Rev. A 40, 913-923 (1989). [CrossRef] [PubMed]
  9. Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, "Realization of the Einstein-Podolsky-Rosen paradox for continuous variables," Phys. Rev. Lett. 68, 3663-3666 (1992). [CrossRef] [PubMed]
  10. S. L. Braunstein and P. van Loock, "Quantum information with continuous variables," Rev. Mod. Phys. 77, 513-577 (2005). [CrossRef]
  11. C. H. Kim and P. Kumar, "Quadrature-squeezed light detection using a self-generated matched local oscillator," Phys. Rev. Lett. 73, 1605-1608 (1994). [CrossRef] [PubMed]
  12. D. Levandovsky, M. Vasilyev, and P. Kumar, "Perturbation theory of quantum solitons: continuum evolution and optimum squeezing by spectral filtering," Opt. Lett. 24, 43-45 (1999). [CrossRef]
  13. R. S. Bennink and R. W. Boyd, "Improved measurement of multimode squeezed light via an eigenmode approach," Phys. Rev. A 66, 053815 (2002). [CrossRef]
  14. M. B. Gray, D. A. Shaddock, C. C. Harb, and H. A. Bachor, "Photodetector designs for low-noise, broadband, and high-power applications," Rev. Sci. Instrum. 69, 3755-3762 (1998). [CrossRef]
  15. J. Zhang, "Einstein-Podolsky-Rosen sideband entanglement in broadband squeezed light," Phys. Rev. A 67, 054302 (2003). [CrossRef]
  16. C. Schori, J. L. Sorensen, and E. S. Polzik, "Narrow-band frequency tunable light source of continuous quadrature entanglement," Phys. Rev. A 66, 033802 (2002). [CrossRef]
  17. Throughout the paper, the fields are expressed in units of E0=√ \hbar omega/2ε0V. The frequency difference between the modes is assumed to be much smaller than the optical frequency so that E0 can be taken as a constant.
  18. R. Loudon and P. L. Knight, "Squeezed light," J. Mod. Opt. 34, 709-759 (1987). [CrossRef]
  19. H. P. Yuen and J. H. Shapiro, "Optical communication with two-photon coherent states--Part III: Quantum measurements realizable with photo-emissive detectors," IEEE Trans. Inf. Theory 26, 78-82 (1980). [CrossRef]
  20. M. J. Collett, R. Loudon, and C. W. Gardiner, "Quantum-theory of optical homodyne and heterodyne-detection," J. Mod. Opt. 34, 881-902 (1987). [CrossRef]
  21. H. A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics, 2nd ed. (Wiley-VCH, 2004). [CrossRef]
  22. S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, N. Lastzka, K. Danzmann, and R. Schnabel, "Experimental characterization of frequency-dependent squeezed light," Phys. Rev. A 71, 013806 (2005). [CrossRef]
  23. K. McKenzie, E. E. Mikhailov, K. Goda, P. K. Lam, N. Grosse, M. B. Gray, N. Mavalvala, and D. E. McClelland, "Quantum noise locking," J. Opt. B 7, S421-S428 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited