OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 2 — Feb. 1, 2007
  • pp: 355–362

Quantum and classical fidelities for Gaussian states

Hyunseok Jeong, Timothy C. Ralph, and Warwick P. Bowen  »View Author Affiliations

JOSA B, Vol. 24, Issue 2, pp. 355-362 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (116 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We examine the physical significance of fidelity as a measure of similarity for Gaussian states by drawing a comparison with its classical counterpart. We find that the relationship between these classical and quantum fidelities is not straightforward, and in general does not seem to provide insight into the physical significance of quantum fidelity. To avoid this ambiguity we propose that the efficacy of quantum information protocols be characterized by determining their transfer function and then calculating the fidelity achievable for a hypothetical pure reference input state.

© 2007 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(350.4800) Other areas of optics : Optical standards and testing

ToC Category:
Continuous Variable

Original Manuscript: May 2, 2006
Revised Manuscript: July 14, 2006
Manuscript Accepted: July 18, 2006
Published: January 26, 2007

Hyunseok Jeong, Timothy C. Ralph, and Warwick P. Bowen, "Quantum and classical fidelities for Gaussian states," J. Opt. Soc. Am. B 24, 355-362 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge U. Press, 2000).
  2. R. Jozsa, "Fidelity for mixed quantum states," J. Mod. Opt. 41, 2315-2323 (1994). [CrossRef]
  3. A. Uhlmann, "The 'transition probability' in the state space of a*-algebra," Rep. Math. Phys. 9, 273-279 (1976). [CrossRef]
  4. S. L. Braunstein, C. A. Fuchs, and H. J. Kimble, "Criteria for continuous-variable quantum teleportation," J. Mod. Opt. 47, 267-278 (2000). [CrossRef]
  5. J. L. Dodd and M. A. Nielsen, "Simple operational interpretation of the fidelity of mixed states," Phys. Rev. A 66, 044301 (2002). [CrossRef]
  6. J. Lee, M. S. Kim, and C. Brukner, "Operationally invariant measure of the distance between quantum states by complementary measurements," Phys. Rev. Lett. 91, 087902 (2003). [CrossRef] [PubMed]
  7. A. Gilchrist, N. K. Langford, and M. A. Nielsen, "Distance measures to compare real and ideal quantum processes," Phys. Rev. A 71, 062310 (2005). [CrossRef]
  8. A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, "Unconditional quantum teleportation," Science 282, 706-709 (1998). [CrossRef] [PubMed]
  9. W. P. Bowen, N. Treps, B. C. Buchler, R. Schnabel, T. C. Ralph, H. A. Bachor, T. Symul, and P. K. Lam, "Experimental investigation of continuous-variable quantum teleportation," Phys. Rev. A 67, 032302 (2003). [CrossRef]
  10. W.P. Bowen, N. Treps, B. C. Buchler, R. Schnabel, T. C. Ralph, T. Symul, and P. K. Lam, "Unity gain and nonunity gain quantum teleportation," IEEE J. Sel. Top. Quantum Electron. 9, 1519-1532 (2003). [CrossRef]
  11. T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl, and H. J. Kimble, "Quantum teleportation of light beams," Phys. Rev. A 67, 033802 (2003). [CrossRef]
  12. A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, "Tripartite quantum state sharing," Phys. Rev. Lett. 92, 177903 (2004). [CrossRef] [PubMed]
  13. F. Grosshans and P. Grangier, "Quantum cloning and teleportation criteria for continuous quantum variables," Phys. Rev. A 64, 010301 (2001). [CrossRef]
  14. S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and P. van Loock, "Quantum versus classical domains for teleportation with continuous variables," Phys. Rev. A 64, 022321 (2001). [CrossRef]
  15. C. M. Caves and K. Wódkiewicz, "Fidelity of Gaussian channels," Open Syst. Inf. Dyn. 11, 309-323 (2004). [CrossRef]
  16. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, 1994).
  17. H. F. Hofmann, "Complementary classical fidelities as an efficient criterion for the evaluation of experimentally realized quantum operations," Phys. Rev. Lett. 94, 160504 (2005). [CrossRef] [PubMed]
  18. J. Lee, M. S. Kim, and H. Jeong, "Transfer of nonclassical features in quantum teleportation via a mixed quantum channel," Phys. Rev. A 62, 032305 (2000). [CrossRef]
  19. J. Fiurásek, "Improving fidelity of continuous-variable teleportation via local operations," Phys. Rev. A 66, 012304 (2002). [CrossRef]
  20. C. M. Caves and K. Wodkiewicz, "Classical phase-space descriptions of continuous-variable teleportation," http://arxiv.org/abs/quant-ph/0401149 (2004).
  21. J. Twamley, "Bures and statistical distance for squeezed thermal states," J. Phys. A 29, 3723-3731 (1996). [CrossRef]
  22. X.-B. Wang, C. H. Oh, and L. C. Kwek, "Bures fidelity of displaced squeezed thermal states," Phys. Rev. A 58, 4186-4190 (1998). [CrossRef]
  23. Gh.-S. Paraoanu and H. Scutaru, "Bures distance between two displaced thermal states," Phys. Rev. A 58, 869-871 (1998). [CrossRef]
  24. P. Marian, T. A. Marian, and H. Scutaru, "Quantifying nonclassicality of one-mode Gaussian states of the radiation field," Phys. Rev. Lett. 88, 153601 (2002). [CrossRef] [PubMed]
  25. There are some exceptions, such as nonunity gain teleportation.
  26. T. C. Ralph and P. K. Lam, "Teleportation with bright squeezed light," Phys. Rev. Lett. 81, 5668-5671 (1998). [CrossRef]
  27. This simplifying assumption has no bearing on the conclusions of the analysis.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited