OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 2 — Feb. 1, 2007
  • pp: 371–378

Mutually unbiased bases and discrete Wigner functions

Gunnar Björk, José L. Romero, Andrei B. Klimov, and Luis L. Sánchez-Soto  »View Author Affiliations

JOSA B, Vol. 24, Issue 2, pp. 371-378 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (439 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Mutually unbiased bases and discrete Wigner functions are closely but not uniquely related. Such a connection becomes more interesting when the Hilbert space has a dimension that is a power of a prime N = d n , which describes a composite system of n qudits. Hence, entanglement naturally enters the picture. Although our results are general, we concentrate on the simplest nontrivial example of dimension N = 8 = 2 3 . It is shown that the number of fundamentally different Wigner functions is severely limited if one simultaneously imposes translational covariance and that the generating operators consist of rotations around two orthogonal axes, acting on the individual qubits only.

© 2007 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Information

Original Manuscript: May 19, 2006
Revised Manuscript: August 3, 2006
Manuscript Accepted: August 18, 2006
Published: January 26, 2007

Gunnar Björk, José L. Romero, Andrei B. Klimov, and Luis L. Sánchez-Soto, "Mutually unbiased bases and discrete Wigner functions," J. Opt. Soc. Am. B 24, 371-378 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. J. Glauber, "Coherent and incoherent states of the radiation field," Phys. Rev. 131, 2766-2788 (1963). [CrossRef]
  2. E. C. G. Sudarshan, "Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams," Phys. Rev. Lett. 10, 277-279 (1963). [CrossRef]
  3. K. Husimi, "Some formal properties of the density matrix," Proc. Phys. Math. Soc. Jpn. 22, 264-314 (1940).
  4. E. P. Wigner, "On the quantum correction for thermodynamic equilibrium," Phys. Rev. 40, 749-759 (1932). [CrossRef]
  5. A. Vourdas, "Quantum systems with finite Hilbert space," Rep. Prog. Phys. 67, 267-248 (2004). [CrossRef]
  6. J. H. Hannay and M. V. Berry, "Quantization of linear maps on a torus--Fresnel diffraction by a periodic grating," Physica D 1, 267-290 (1980). [CrossRef]
  7. U. Leonhardt, "Quantum-state tomography and discrete Wigner function," Phys. Rev. Lett. 74, 4101-4105 (1995). [CrossRef] [PubMed]
  8. U. Leonhardt, "Discrete Wigner function and quantum-state tomography," Phys. Rev. A 53, 2998-3013 (1996). [CrossRef] [PubMed]
  9. F. A. Buot, "Method for calculating TrHn in solid-state theory," Phys. Rev. B 10, 3700-3705 (1974). [CrossRef]
  10. W. K. Wootters, "A Wigner-function formulation of finite-state quantum mechanics," Ann. Phys. (N.Y.) 176, 1-21 (1987). [CrossRef]
  11. D. Galetti and A. F. R. De Toledo Piza, "An extended Weyl-Wigner transformation for special finite spaces," Physica A 149, 267-282 (1988). [CrossRef]
  12. O. Cohendet, Ph. Combe, M. Sirugue, and M. Sirugue-Collin, "A stochastic treatment of the dynamics of an integer spin," J. Phys. A 21, 2875-2884 (1988). [CrossRef]
  13. W. K. Wootters, "Picturing qubits in phase space," IBM J. Res. Dev. 48, 99-110 (2004). [CrossRef]
  14. K. S. Gibbons, M. J. Hoffman, and W. K. Wootters, "Discrete phase space based on finite fields," Phys. Rev. A 70, 062101 (2004). [CrossRef]
  15. R. Asplund and G. Björk, "Reconstructing the discrete Wigner function and some properties of the measurement bases," Phys. Rev. A 64, 012106 (2001). [CrossRef]
  16. M. Koniorczyk, V. Buzek, and J. Janszky, "Wigner-function description of quantum teleportation in arbitrary dimensions and a continuous limit," Phys. Rev. A 64, 034301 (2001). [CrossRef]
  17. J. P. Paz, "Discrete Wigner functions and the phase-space representation of quantum teleportation," Phys. Rev. A 65, 062311 (2002). [CrossRef]
  18. J. A. Vaccaro and D. T. Pegg, "Wigner function for number and phase," Phys. Rev. A 41, 5156-5163 (1990). [CrossRef] [PubMed]
  19. C. Miquel, J. P. Paz, and M. Saraceno, "Quantum computers in phase space," Phys. Rev. A 65, 062309 (2002). [CrossRef]
  20. Y. Aharonov and B.-G. Englert, "The mean king's problem: spin 1," Z. Naturforsch., A: Phys. Sci. 56, 16-19 (2001).
  21. B.-G. Englert and Y. Aharonov, "The mean king's problem: prime degrees of freedom," Phys. Lett. A 284, 1-5 (2001). [CrossRef]
  22. P. K. Aravind, "Solution to the king's problem in prime power dimensions," Z. Naturforsch., A: Phys. Sci. 58, 85-92 (2003).
  23. P. K. Aravind, "Best conventional solutions to the king's problem," Z. Naturforsch., A: Phys. Sci. 58, 682-690 (2003).
  24. T. Durt, "Bell states, mutually unbiased bases, and the mean king's problem," arXiv.org e-Print archive, quant-ph/0401037, June 27, 2005, http://arxiv.org/abs/quant-ph/0401037.
  25. A. Hayashi, M. Horibe, and T. Hashimoto, "Mean king's problem with mutually unbiased bases and orthogonal Latin squares," Phys. Rev. A 71, 052331 (2005). [CrossRef]
  26. P. Delsarte, J. M. Goethals, and J. J. Seidel, "Bounds for systems of lines and Jacobi polynomials," Philips Res. Rep. 30, 91-105 (1975).
  27. W. K. Wootters, "Quantum mechanics without probability amplitudes," Found. Phys. 16, 391-405 (1986). [CrossRef]
  28. W. K. Wootters and B. D. Fields, "Optimal state-determination by mutually unbiased measurements," Ann. Phys. (N.Y.) 191, 363-381 (1989). [CrossRef]
  29. C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India (IEEE, 1984), pp. 175-179. [PubMed]
  30. H. Bechmann-Pasquinucci and A. Peres, "Quantum cryptography with 3-state systems," Phys. Rev. Lett. 85, 3313-3316 (2000). [CrossRef] [PubMed]
  31. R. Asplund, G. Björk, and M. Bourennane, "An expectation value expansion of Hermitian operators in a discrete Hilbert space," J. Opt. B 3, 163-170 (2001). [CrossRef]
  32. D. Bruß and C. Macchiavello, "Optimal eavesdropping in cryptography with three-dimensional quantum states," Phys. Rev. Lett. 88, 127901 (2002). [CrossRef] [PubMed]
  33. I. D. Ivanovic, "Geometrical description of quantal state determination," J. Phys. A 14, 3241-3246 (1981). [CrossRef]
  34. J. Lawrence, C. Brukner, and A. Zeilinger, "Mutually unbiased binary observable sets on N qubits," Phys. Rev. A 65, 032320 (2002). [CrossRef]
  35. J. L. Romero, G. Björk, A. B. Klimov, and L. L. Sánchez-Soto, "Structure of the sets of mutually unbiased bases for N qubits," Phys. Rev. A 72, 062310 (2005). [CrossRef]
  36. A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, "Quantum error correction and orthogonal geometry," Phys. Rev. Lett. 78, 405-408 (1997). [CrossRef]
  37. A. R. Calderbank, P. J. Cameron, W. M. Cantor, and J. J. Seidel, "Z4-Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets," Proc. London Math. Soc. 75, 436-480 (1997). [CrossRef]
  38. S. Chaturvedi, "Aspects of mutually unbiased bases in odd-prime-power dimensions," Phys. Rev. A 65, 044301 (2002). [CrossRef]
  39. A. O. Pittenger and M. H. Rubin, "Mutually unbiased bases, generalized spin matrices and separability," Linear Algebr. Appl. 390, 255-278 (2004). [CrossRef]
  40. T. Durt, "About mutually unbiased bases in even and odd prime power dimensions," J. Phys. A 38, 5267-5284 (2005). [CrossRef]
  41. S. Bandyopadhyay, P. O. Boykin, V. Roychowdhury, and F. Vatan, "A new proof for the existence of mutually unbiased bases," Algorithmica 34, 512-528 (2002). [CrossRef]
  42. A. B. Klimov, L. L. Sánchez-Soto, and H. de Guise, "Multicomplementary operators via finite Fourier transform," J. Phys. A 38, 2747-2760 (2005). [CrossRef]
  43. M. Grassl, "On SIC-POVMs and MUBs in dimension 6," arXiv.org e-Print archive, quant-ph/0406175, June 23, 2004, http://arxiv.org/abs/quant-ph/0406175.
  44. P. Wocjan and T. Beth, "New construction of mutually unbiased bases in square dimensions," Quantum Inf. Comput. 5, 93-101 (2005).
  45. C. Archer, "There is no generalization of known formulas for mutually unbiased bases," J. Math. Phys. 46, 022106 (2005). [CrossRef]
  46. A. Klappenecker and M. Rötteler, "Constructions of mutually unbiased bases," Lect. Notes Comput. Sci. 2948, 137-144 (2004). [CrossRef]
  47. W. K. Wootters, "Quantum measurements and finite geometry," Found. Phys. 36, 112-126 (2006). [CrossRef]
  48. I. Bengtsson and A. Ericsson, "Mutually unbiased bases and the complementarity polytope," Open Syst. Inf. Dyn. 12, 107-120 (2005). [CrossRef]
  49. M. Saniga, M. Planat, and H. Rosu, "Mutually unbiased bases and finite projective planes," J. Opt. B 6, L19-L20 (2004). [CrossRef]
  50. T. Durt, "Tomography of one and two qubit states and factorisation of the Wigner distribution in prime power dimensions," arXiv.org e-Print archive, quant-ph/0604117, April 17, 2006, http://arxiv.org/abs/quant-ph/0604117.
  51. A. O. Pittenger and M. H. Rubin, "Wigner function and separability for finite systems," J. Phys. A 38, 6005-6036 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited