OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 3 — Mar. 1, 2007
  • pp: 496–503

Polarized spectral characteristics of Nd 3 + : K Y ( Mo O 4 ) 2 crystal with perfect cleavage planes: a promising microchip gain medium

Yujin Chen, Yanfu Lin, Xinghong Gong, Qiguang Tan, Zundu Luo, and Yidong Huang  »View Author Affiliations

JOSA B, Vol. 24, Issue 3, pp. 496-503 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (133 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An Nd 3 + : K Y ( Mo O 4 ) 2 crystal with perfect cleavage planes was grown by the Czochralski method. The room-temperature polarized absorption and the infrared-emission and upconversion visible-emission characteristics of the crystal were investigated. The comparison between the radiative and fluorescence lifetimes showed that the nonradiative transition from the F 3 2 4 multiplet is nearly neglectable for the crystal. The relation among the crystal structure, the spectroscopic parameters, and the laser performances of the crystal were discussed. The cleavage nature and good spectral properties of the Nd 3 + : K Y ( Mo O 4 ) 2 crystal show that it is a promising microchip gain medium.

© 2007 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(160.5690) Materials : Rare-earth-doped materials
(300.6170) Spectroscopy : Spectra

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 7, 2006
Revised Manuscript: September 26, 2006
Manuscript Accepted: October 23, 2006
Published: February 15, 2007

Yujin Chen, Yanfu Lin, Xinghong Gong, Qiguang Tan, Zundu Luo, and Yidong Huang, "Polarized spectral characteristics of Nd3+:KY(MoO4)2 crystal with perfect cleavage planes: a promising microchip gain medium," J. Opt. Soc. Am. B 24, 496-503 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Zayhowski and A. Mooradian, "Single-frequency microchip Nd lasers," Opt. Lett. 14, 24-26 (1989). [CrossRef] [PubMed]
  2. T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, "Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers," Opt. Lett. 16, 1955-1957 (1991). [CrossRef] [PubMed]
  3. M. Montes, D. Jaque, Z. Luo, and Y. Huang, "Short-pulse generation from a resonantly pumped NdAl3(BO3)4 microchip laser," Opt. Lett. 30, 397-399 (2005). [CrossRef] [PubMed]
  4. P. Klopp, U. Griebner, V. Petrov, X. Mateos, M. A. Bursukova, M. C. Pujol, R. Sole, J. Gavalda, M. Aguilo, F. Guell, J. Massons, T. Kirilov, and F. Diaz, "Laser operation of the new stoichiometric crystal KYb(WO4)2," Appl. Phys. B: Photophys. Laser Chem. 74, 185-189 (2002). [CrossRef]
  5. E. Molva, "Microchip lasers and their applications in optical microsystems," Opt. Mater. 11, 289-299 (1999). [CrossRef]
  6. F. Varsanyi, "Surface lasers," Appl. Phys. Lett. 19, 169-171 (1971). [CrossRef]
  7. A. A. Kaminskii and S. N. Bagaev, "Ribbon and sheet miniature crystal lasers," Quantum Electron. 24, 1029-1030 (1994). [CrossRef]
  8. A. A. Kaminskii and H. R. Verdun, "New high power, high efficient quasi-CW and CW single-mode KY(MoO4)2:Nd3+ laser end-pumped by a GaAlAs laser-diode array," Phys. Status Solidi A 138, K49-K53 (1993). [CrossRef]
  9. Y. J. Chen, Y. D. Huang, X. Q. Lin, Q. G. Tan, Z. D. Luo, and Y. F. Lin, "Laser emission from unprocessed cleavage microchip," Appl. Phys. Lett. 86, 021115 (2005). [CrossRef]
  10. Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, "Passively Q-switched laser operation of Nd3+:LaB3O6 cleavage microchip," J. Appl. Phys. 99, 103101 (2006). [CrossRef]
  11. A. A. Kaminskii, H. J. Eichier, K. Ueda, N. V. Klassen, B. S. Redkin, L. E. Li, J. Findeisen, D. Jaque, J. Garcia-Sole, J. Fernandez, and R. Balda, "Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and undoped monoclinic ZnWO4 and CdWO4 as laser-active and stimulated Raman scattering-active crystals," Appl. Opt. 38, 4533-4547 (1999). [CrossRef]
  12. A. A. Kaminskii, A. V. Butashin, H. J. Eichler, D. Grebe, R. Macdonald, K. Ueda, H. Nishioka, W. Odajima, M. Tateno, J. Song, M. Musha, S. N. Bagaev, andA. A. Pavlyuk, "Orthorhombic ferroelectric and ferroelastic Gd2(MoO4)3 crystal: a new many-purposed nonlinear and optical material: efficient multiple stimulated Raman scattering and cw and tunable second harmonic generation," Opt. Mater. 7, 59-73 (1997). [CrossRef]
  13. T. T. Basiev, S. V. Vassiliev, M. E. Doroshenko, V. V. Osiko, V. M. Puzikov, and M. B. Kosmyna, "Laser and self-Raman-laser oscillations of PbMoO4:Nd3+ crystal under laser diode pumping," Opt. Lett. 31, 65-67 (2006). [CrossRef] [PubMed]
  14. A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (Springer-Verlag, 1996).
  15. A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, M. B. Danailov, H. J. Eichler, A. Bednarkiewicz, W. Strek, and A. N. Titov, "Laser operation and Raman self-frequency conversion in Yb:KYW microchip laser," Appl. Phys. B: Photophys. Laser Chem. 75, 795-797 (2002). [CrossRef]
  16. A. A. Kaminskii, A. A. Pavlyuk, and P. V. Klevtsov, "Spectroscopic properties of KY(MoO4)2 monocrystals activated by Nd3+ ions," Opt. Spectrosc. 28, 157-160 (1970).
  17. A. A. Kaminskii, P. V. Klevtsov, and A. A. Pavlyuk, "Stimulated emission from KY(MoO4)2-Nd3+ crystal laser," Phys. Status Solidi A 1, K91-K94 (1970). [CrossRef]
  18. A. A. Kaminskii, S. E. Sarkisov, and L. Li, "Investigation of stimulated emission in the 4F3/2-->4I13/2 transition of Nd3+ ions in crystals (III)," Phys. Status Solidi A 15, K141-K143 (1973). [CrossRef]
  19. P. V. Klevtsov and S. V. Borisov, "The X-ray investigation of dimolybdate KY(MoO4)2," Dokl. Akad. Nauk SSSR 177, 1333-1336 (1967).
  20. M. C. Pujol, M. Rico, C. Zaldo, R. Sole, V. Nikolov, X. Solans, M. Aguilo, and F. Diaz, "Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals," Appl. Phys. B: Photophys. Laser Chem. 68, 187-197 (1999). [CrossRef]
  21. G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, "Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3," J. Opt. Soc. Am. B 14, 2238-2247 (1997). [CrossRef]
  22. A. Brignon, G. Feugnet, J. Huignard, and J. P. Pocholle, "Compact Nd:YAG and Nd:YVO4 amplifiers end-pumped by a high-brightness stacked array," IEEE J. Quantum Electron. 34, 577-585 (1998). [CrossRef]
  23. L. DeShazer, "Vanadate crystals exploit diode-pumped technology," Laser Focus World 30, 88-90, 92-93 (1994).
  24. P. C. Powell, Physics of Solid-State Laser Materials (Springer-Verlag, 1998). [CrossRef]
  25. J. Hanuza and L. Labuda, "Polarized Raman and infrared spectra of a multilayer KY(MoO4)2 crystal," J. Raman Spectrosc. 11, 231-237 (1981). [CrossRef]
  26. V. Lupei, N. Pavel, and T. Taira, "Efficient laser emission in concentrated Nd laser materials under pumping into the emission level," IEEE J. Quantum Electron. 38, 240-245 (2002). [CrossRef]
  27. A. A. Pavlyuk, A. A. Kaminskii, and P. V. Klevtsov, "The solubility of neodymium in crystals of potassium yttrium molybdate KY(MoO4)2," Izv. Akad. Nauk SSSR, Neorg. Mater. 8, 1870-1871 (1972).
  28. W. F. Krupke, "Optical absorption and fluorescence intensities in several rare-earth-doped Y2O3 and LaF3 single crystals," Phys. Rev. 145, 325-337 (1966). [CrossRef]
  29. B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-61 (1962). [CrossRef]
  30. G. S. Ofelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511-20 (1962). [CrossRef]
  31. W. T. Carnall, P. R. Fields, and K. Rajnak, "Electron energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+," J. Chem. Phys. 49, 4424-4442 (1968). [CrossRef]
  32. Z. Luo, X. Chen, and T. Zhao, "Judd-Ofelt parameter analysis of rare earth anisotropic crystals by three perpendicular unpolarized absorption measurements," Opt. Commun. 134, 415-422 (1997). [CrossRef]
  33. A. Mendez-Blas, M. Rico, V. Volkov, C. Zaldo, and C. Cascales, "Optical emission properties of Nd3+ in NaBi(WO4)2 single crystal," Mol. Phys. 101, 941-949 (2003). [CrossRef]
  34. E. Cavalli, E. Zannoni, C. Mucchino, V. Carozzo, A. Toncelli, M. Tonelli, and M. Bettinelli, "Optical spectroscopy of Nd3+ in KLa(MoO4)2 crystals," J. Opt. Soc. Am. B 16, 1958-1965 (1999). [CrossRef]
  35. F. Cornacchia, A. Toncelli, M. Tonelli, E. Cavalli, E. Bovero, and N. Magnani, "Optical spectroscopy of SrWO4:Nd3+ single crystals," J. Phys. Condens. Matter 16, 6867-6876 (2004). [CrossRef]
  36. G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, "Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics," IEEE J. Quantum Electron. 40, 747-757 (2004). [CrossRef]
  37. B. F. Aull and H. P. Jenssen, "Vibronic interaction in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross-sections," IEEE J. Quantum Electron. 18, 925-930 (1982). [CrossRef]
  38. R. Moncorge, B. Chambon, J. Y. Rivoire, N. Garnier,E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, "Nd doped crystals for medical laser applications," Opt. Mater. 8, 109-119 (1997). [CrossRef]
  39. Y. Chen, Y. Lin, Z. Luo, and Y. Huang, "Effect of annealing treatment on spectroscopic properties of a Nd3+-doped PbWO4 single crystal," J. Opt. Soc. Am. B 22, 898-904 (2005). [CrossRef]
  40. R. Balda, M. Sanz, A. Mendioroz, J. Fernandez, L. S. Griscom, and J. L. Adam, "Infrared-to-visible upconversion in Nd3+-doped chalcohalide glasses," Phys. Rev. B 64, 144101 (2001). [CrossRef]
  41. D. Jaque, J. Capmany, F. Molero, Z. D. Luo, and J. Garcia Sole, "Up-conversion luminescence in the Nd3+:YAB self frequency doubling laser crystal," Opt. Mater. 10, 211-217 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited