OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 3 — Mar. 1, 2007
  • pp: 510–515

Frequency dependence of the magnetic response of split-ring resonators

Atsushi Ishikawa, Takuo Tanaka, and Satoshi Kawata  »View Author Affiliations


JOSA B, Vol. 24, Issue 3, pp. 510-515 (2007)
http://dx.doi.org/10.1364/JOSAB.24.000510


View Full Text Article

Enhanced HTML    Acrobat PDF (390 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design principle of split-ring resonators (SRRs) for realizing negative magnetic metamaterial is proposed through theoretical investigation of magnetic properties of SRRs from terahertz (THz) to the visible light region. To describe the frequency dispersion of metal throughout the frequency range, we consider the exact expression of the internal impedance formula. Our results indicate that the design principle should be changed completely at the transition frequency of 100 THz . Below 100 THz , since the resistance of the SRRs determines the magnetic responses, low-resistance structures are essential. On the other hand, we should design the SRRs’ structures maintaining large geometrical inductance above the 100 THz region, because the decrease of the geometrical inductance dominantly reduces the magnetic responses.

© 2007 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(260.5740) Physical optics : Resonance

ToC Category:
Materials

History
Original Manuscript: June 22, 2006
Revised Manuscript: September 25, 2006
Manuscript Accepted: October 13, 2006
Published: February 15, 2007

Citation
Atsushi Ishikawa, Takuo Tanaka, and Satoshi Kawata, "Frequency dependence of the magnetic response of split-ring resonators," J. Opt. Soc. Am. B 24, 510-515 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-3-510


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  3. R. A. Shelby, D. R. Smith, and S. Shultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  4. V. G. Veselago, "The electrodynamics of substance with simultaneously negative value of epsilon and μ," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  5. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004). [CrossRef] [PubMed]
  6. S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, "Midinfrared resonant magnetic nanostructures exhibiting a negative permeability," Phys. Rev. Lett. 94, 037402-1-037402-4 (2005). [CrossRef]
  7. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004). [CrossRef] [PubMed]
  8. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901-1-203901-4 (2005). [CrossRef]
  9. N.-C. Panoiu and R. M. Osgood, Jr., "Influence of the dispersive properties of metals on the transmission characteristics of left-handed materials," Phys. Rev. E 68, 016611-1-016611-12 (2003). [CrossRef]
  10. S. O'Brien and J. B. Pendry, "Magnetic activity at infrared frequencies in structured metallic photonic crystals," J. Phys. Condens. Matter 14, 6383-6394 (2002). [CrossRef]
  11. S. O'Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, "Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials," Phys. Rev. B 69, 241101-1-241101-4 (2004). [CrossRef]
  12. J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the magnetic response of split-ring resonators at optical frequencies," Phys. Rev. Lett. 95, 223902-1-223902-4 (2005). [CrossRef]
  13. A. Ishikawa, T. Tanaka, and S. Kawata, "Negative magnetic permeability in the visible light region," Phys. Rev. Lett. 95, 237401-1-237401-4 (2005). [CrossRef]
  14. M. Born and E. Wolf, Principle of Optics, 6th ed. (Pergamon Press, 1980), pp. 624-627.
  15. S. Ramo, J. R. Whinnery, and T. V. Duzer, Fields and Waves in Communication Electronics, 3rd ed. (Wiley, 1993), pp. 149-155.
  16. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  17. K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, 2nd ed. (Artech House, 1996), pp. 375-456.
  18. R. Marques, F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design-theory and experiments," IEEE Trans. Antennas Propag. 51, 2572-2581 (2003). [CrossRef]
  19. I. A. Larkin, M. I. Stockman, M. Achermann, and V. I. Klimov, "Dipolar emitters at nanoscale proximity of metal surfaces: giant enhancement of relaxation in microscopic theory," Phys. Rev. B 69, 121403-1-121403-4 (2004). [CrossRef]
  20. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005). [CrossRef]
  21. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404-1-137404-4 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited