OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 3 — Mar. 1, 2007
  • pp: 516–521

Influence of local-field effects on the radiative lifetime of liquid suspensions of Nd : YAG nanoparticles

Ksenia Dolgaleva, Robert W. Boyd, and Peter W. Milonni  »View Author Affiliations

JOSA B, Vol. 24, Issue 3, pp. 516-521 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (246 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We measured the radiative lifetime of Nd : YAG nanopowder with an average particle size of 20 nm suspended in different organic and inorganic liquids. To extract information regarding local-field effects, we fitted the experimental data to three different local-field models: the virtual-cavity (or Lorentz) model, the real-cavity model, and the no-local-field-effects model. The real-cavity model and the no-local-field-effects model can both be adequately fitted to our experimental results, while the virtual-cavity model can be ruled out.

© 2007 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.4760) Materials : Optical properties
(160.5690) Materials : Rare-earth-doped materials

ToC Category:

Original Manuscript: July 24, 2006
Revised Manuscript: September 29, 2006
Manuscript Accepted: October 13, 2006
Published: February 15, 2007

Ksenia Dolgaleva, Robert W. Boyd, and Peter W. Milonni, "Influence of local-field effects on the radiative lifetime of liquid suspensions of Nd:YAG nanoparticles," J. Opt. Soc. Am. B 24, 516-521 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. R. Berman, ed., Cavity Quantum Electrodynamics (Academic, 1994).
  2. P. de Vries and A. Lagendijk, "Resonant scattering and spontaneous emission in dielectrics: microscopic derivation of local-field effects," Phys. Rev. Lett. 81, 1381-1384 (1998). [CrossRef]
  3. J. E. Sipe and R. W. Boyd, "Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model," Phys. Rev. A 46, 1614-1629 (1992). [CrossRef] [PubMed]
  4. R. J. Gehr and R. W. Boyd, "Optical properties of nanostructured optical materials," Chem. Mater. 1996, 1807-1819.
  5. E. Snoeks, A. Lagendijk, and A. Polman, "Measuring and modifying the spontaneous emission rate of erbium near an interface," Phys. Rev. Lett. 74, 2459-2462 (1995). [CrossRef] [PubMed]
  6. G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, "Enhanced nonlinear optical response of composite materials," Phys. Rev. Lett. 74, 1871-1874 (1995). [CrossRef] [PubMed]
  7. V. M. Shalaev and M. I. Stockman, "Fractals: optical susceptibility and giant Raman scattering," Z. Phys. D: At., Mol. Clusters 10, 71-79 (1988). [CrossRef]
  8. G. L. J. A. Rikken and Y. A. R. R. Kessener, "Local field effects and electric and magnetic dipole transitions in dielectrics," Phys. Rev. Lett. 74, 880-883 (1995). [CrossRef] [PubMed]
  9. F. J. P. Schuurmans, D. T. N. de Lang, G. H. Wegdam, R. Sprik, and A. Lagendijk, "Local-field effects on spontaneous emission in a dense supercritical gas," Phys. Rev. Lett. 80, 5077-5080 (1998). [CrossRef]
  10. G. M. Kumar, D. N. Rao, and G. S. Agarwal, "Measurement of local field effects of the host on the lifetimes of embedded emitters," Phys. Rev. Lett. 91, 203903 (2003). [CrossRef]
  11. G. M. Kumar, D. N. Rao, and G. S. Agarwal, "Experimental studies of spontaneous emission from dopants in an absorbing dielectric," Opt. Lett. 30, 732-734 (2005). [CrossRef] [PubMed]
  12. P. W. Milonni, "Field quantization and radiative processes in dispersive dielectric media," J. Mod. Opt. 42, 1991-2004 (1995). [CrossRef]
  13. D. E. Aspnes, "Local-field effects and effective-medium theory: a microscopic perspective," Am. J. Phys. 50, 704-709 (1982). [CrossRef]
  14. R. J. Glauber and M. Lewenstein, "Quantum optics of dielectric media," Phys. Rev. A 43, 467-491 (1991). [CrossRef] [PubMed]
  15. H. A. Lorentz, Theory of Electrons, 2nd ed. (Teubner, 1916).
  16. J. D. Jackson, Classical Electrodynamics (Wiley, 1962).
  17. C.-K. Duan, M. F. Reid, and Z. Wang, "Local field effects on the radiative lifetime of emitters in surrounding media: virtual- or real-cavity model?" Phys. Lett. A 343, 474-480 (2005). [CrossRef]
  18. J. J. Maki, M. S. Malcuit, J. E. Sipe, and R. W. Boyd, "Linear and nonlinear optical measurements of the Lorentz local field," Phys. Rev. Lett. 67, 972-975 (1991). [CrossRef] [PubMed]
  19. P. Lavallard, M. Rosenbauer, and T. Gacoin, "Influence of surrounding dielectrics on the spontaneous emission of sulforhodamine B molecules," Phys. Rev. A 54, 5450-5453 (1996). [CrossRef] [PubMed]
  20. G. Lamouche, P. Lavallard, and T. Gacoin, "Optical properties of dye molecules as a function of the surrounding dielectric medium," Phys. Rev. A 59, 4668-4674 (1999). [CrossRef]
  21. S. F. Wuister, C. de Mello Donega, and A. Meijerink, "Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media," J. Chem. Phys. 121, 4310-4315 (2004). [CrossRef] [PubMed]
  22. R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, "Dependence of fluorescence lifetimes of Y2O3:Eu3+ nanoparticles on the surrounding medium," Phys. Rev. B 60, R14012-R14015 (1999). [CrossRef]
  23. The composites containing Eu3+ embedded in a ligand cage (Refs. ) are fundamentally different from the sort of nanocomposite material considered in Ref. and in the present work.
  24. H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, "Fluorescence lifetimes for neodymium-doped yttrium aluminum garnet and yttrium oxide powders," Phys. Rev. B 25, 1467-1473 (1982). [CrossRef]
  25. In this paper we consider the Nd3+:YAG nanoparticles to be the emitters in our composite materials.
  26. J. C. Maxwell Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. R. Soc. London Ser. A 203, 384-420 (1904).
  27. J. C. Maxwell Garnett, "Colours in metal glasses in metallic films and in metallic solutions," Philos. Trans. R. Soc. London, Ser. A 205, 237-288 (1906).
  28. N. P. Barnes and B. M. Walsh, "Amplified spontaneous emission: application to Nd:YAG lasers," IEEE J. Quantum Electron. 35, 101-109 (1999). [CrossRef]
  29. By "vacuum" we mean the radiative lifetime of an ion placed in the same chemical environment but for a medium of refractive index of unity.
  30. T. S. Lomheim and L. G. DeShazer, "Determination of optical cross sections by the measurement of saturation flux using laser-pumped laser oscillators," J. Opt. Soc. Am. 68, 1575-1579 (1978). [CrossRef]
  31. T. Kushida and J. E. Geusic, "Optical refrigeration in Nd-doped yttrium aluminum garnet," Phys. Rev. Lett. 21, 1172-1175 (1968). [CrossRef]
  32. S. Singh, R. G. Smith, and L. G. Van Uitert, "Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature," Phys. Rev. B 10, 2566-2572 (1974). [CrossRef]
  33. A. Rosencwaig and E. A. Hildum, "Nd3+ fluorescence quantum-efficiency measurements with photo acoustics," Phys. Rev. B 23, 3301-3307 (1981). [CrossRef]
  34. C. J. Kennedy and J. D. Barry, "New evidence on quantum efficiency of Nd:YAG," Appl. Phys. Lett. 31, 91-92 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited