OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 3 — Mar. 1, 2007
  • pp: 644–652

Analytical expression of the force due to multiple TM plane-wave incidences on an infinite lossless dielectric circular cylinder of arbitrary size

Tomasz M. Grzegorczyk and Jin Au Kong  »View Author Affiliations


JOSA B, Vol. 24, Issue 3, pp. 644-652 (2007)
http://dx.doi.org/10.1364/JOSAB.24.000644


View Full Text Article

Enhanced HTML    Acrobat PDF (499 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A closed-form expression of the force on an infinite lossless dielectric cylinder illuminated by a TM incidence (electric field parallel to the cylinder’s axis) is derived. The formula, expressed as a simple sum, is straightforward to compute and is shown to be faster converging than the direct application of the Maxwell stress tensor and the expansion of the fields in the cylindrical coordinate system. A generalization of the formula to multiple incidences is provided and is illustrated by studying the force due to a Gaussian beam on cylinders of various parameters. We show in this way that the effects of the gradient of the intensity profile on the transverse and longitudinal confinements are decoupled, due to the permittivity contrast and to the size of the particle. Since the formula we derive is exact and is therefore not limited to the Rayleigh or ray optics regime, we expect it to be important for the modeling of optical forces on elongated particles of arbitrary sizes.

© 2007 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(260.2110) Physical optics : Electromagnetic optics
(290.5850) Scattering : Scattering, particles

ToC Category:
Physical Optics

History
Original Manuscript: August 30, 2006
Revised Manuscript: October 24, 2006
Manuscript Accepted: October 27, 2006
Published: February 15, 2007

Citation
Tomasz M. Grzegorczyk and Jin Au Kong, "Analytical expression of the force due to multiple TM plane-wave incidences on an infinite lossless dielectric circular cylinder of arbitrary size," J. Opt. Soc. Am. B 24, 644-652 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-3-644


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. Poynting, "Tangential stress of light obliquely incident on absorbing surface," Philos. Mag. 9, 169-171 (1905).
  2. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  3. A. Ashkin and J. M. Dziedzic, "Optical levitation by radiation pressure," Appl. Phys. Lett. 19, 283-285 (1971). [CrossRef]
  4. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  5. J. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  6. J. A. Kong, Electromagnetic Wave Theory (EMW, 2005).
  7. A. R. Zakharian, M. Mansuripur, and J. V. Moloney, "Radiation pressure and the distribution of electromagnetic force in dielectric media," Opt. Express 13, 2321-2336 (2005). [CrossRef] [PubMed]
  8. B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, "Ab initio study of the radiation pressure on dielectric and magnetic media," Opt. Express 13, 9280-9291 (2005). [CrossRef] [PubMed]
  9. B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, "Lorentz force on dielectric and magnetic particles," J. Electromagn. Waves Appl. 20, 827-839 (2006). [CrossRef]
  10. J. P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 8, 14-21 (1973). [CrossRef]
  11. Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996). [CrossRef]
  12. P. Zemánek, A. Jonás, L. Srámek, and M. Liska, "Optical trapping of Rayleigh particles using a Gaussian standing wave," Opt. Commun. 151, 273-285 (1998). [CrossRef]
  13. A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992). [CrossRef] [PubMed]
  14. J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989). [CrossRef]
  15. K. F. Ren, G. Gréhan, and G. Gouesbet, "Radiation pressure forces exerted on a particle artbitrarily located in a Gaussian beam by using the generalized Lorentz-Mie theory, and associated resonance effects," Opt. Commun. 108, 343-354 (1994). [CrossRef]
  16. L. Mees, K. F. Ren, G. Gréhan, and G. Gouesbet, "Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results," Appl. Opt. 38, 1867-1876 (1999). [CrossRef]
  17. T. M. Grzegorczyk, B. A. Kemp, and J. A. Kong, "Trapping and binding of an arbitrary number of cylindrical particles in an in:plane electromagnetic field," J. Opt. Soc. Am. A 23, 2324-2330 (2006). [CrossRef]
  18. B. T. Draine, "The discrete-dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333, 848-872 (1988). [CrossRef]
  19. J. R. Arias-González and M. Nieto-Vesperinas, "Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions," J. Opt. Soc. Am. A 20, 1201-1209 (2003). [CrossRef]
  20. V. Wong and M. A. Ratner, "Gradient and nongradient contributions to plasmon-enhanced optical forces on silver nanoparticles," Phys. Rev. B 73, 075416 (2006). [CrossRef]
  21. P. C. Chaumet and M. Nieto-Vesperinas, "Coupled dipole method determination of the electromagnetic force on particle over a fiat dielectric substrate," Phys. Rev. B 61, 14119-14127 (2000). [CrossRef]
  22. C. Rockstuhl and H. P. Herzig, "Rigorous diffraction theory applied to the analysis of the optical force on elliptical nano- and micro-cylinders," J. Opt. A 6, 921-931 (2004). [CrossRef]
  23. R. C. Gauthier, M. Ashman, and C. P. Grover, "Experimental confirmation of the optical-trapping properties of cylindrical objects," Appl. Opt. 38, 4861-4869 (1999). [CrossRef]
  24. M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, "Optical trapping and alignment of single gold nanorods by using plasmon resonances," Opt. Lett. 31, 2075-2077 (2006). [CrossRef] [PubMed]
  25. L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, "Light-induced cell separation in a tailored optical landscape," Appl. Phys. Lett. 87, 123901 (2005). [CrossRef]
  26. J. Zhang, H. I. Kim, X. Sun, C. H. Oh, and H. Lee, "Optical trapping carbon nanotubes," Colloids Surf. A 284-285, 369-372 (2006). [CrossRef]
  27. D. Felbacq, G. Tayeb, and D. Maystre, "Scattering by a random set of parallel cylinders," J. Opt. Soc. Am. A 11, 2526-2538 (1994). [CrossRef]
  28. A. Madrazo and M. Nieto-Vesperinas, "Scattering of electromagnetic waves from a cylinder in front of a conducting plane," J. Opt. Soc. Am. A 12, 1298-1309 (1995). [CrossRef]
  29. V. V. Kotlyar and A. G. Nalimov, "Analytical expression for radiation forces on a dielectric cylinder illuminated by a cylindrical Gaussian beam," Opt. Express 14, 6316-6321 (2006). [CrossRef] [PubMed]
  30. D. Maystre and P. Vincent, "Making photonic crystals using trapping and binding optical forces on particles," J. Opt. A 8, 1059-1066 (2006). [CrossRef]
  31. T. M. Grzegorczyk, B. A. Kemp, and J. A. Kong, "Stable optical trapping based on optical binding forces," Phys. Rev. Lett. 96, 113903 (2006). [CrossRef] [PubMed]
  32. J.-M. Fournier, G. Boer, G. Delacrétaz, P. Jacquot, J. Rohner, and R. Salathé, "Building optical matter with binding and trapping forces," Proc. SPIE 5514, 309-317 (2004). [CrossRef]
  33. J.-M. Fournier, J. Rohner, P. Jacquot, R. Johann, S. Mias, and R. Salathé, "Assembling mesoscopic particles by various optical schemes," Proc. SPIE 5930, 238-247 (2005).
  34. P. C. Chaumet and M. Nieto-Vesperinas, "Time-average total force on a dipolar sphere in an electromagnetic field," Opt. Lett. 25, 1065-1067 (2001). [CrossRef]
  35. B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, "Optical momentum transfer to absorbing Mie particles," Phys. Rev. Lett. 97, 133902 (2006). [CrossRef] [PubMed]
  36. L. Tsang, J. Kong, and K. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, 2000). [CrossRef]
  37. P. Zemánek, V. Karásek, and A. Sasso, "Optical forces acting on Rayleigh particle placed into interference field," Opt. Commun. 240, 401-415 (2004). [CrossRef]
  38. C. D. Mellor and C. D. Bain, "Array formation in evanescent waves," ChemPhysChem 7, 329-332 (2006). [CrossRef]
  39. L. Tsang, J. Kong, K. Ding, and C. Ao, Scattering of Electromagnetic Waves: Numerical Simulations (Wiley, 2000). [CrossRef]
  40. K. T. Gahagan and J. G. A. Swartzlander, "Optical vortex trapping of particles," Opt. Lett. 21, 827-829 (1996). [CrossRef] [PubMed]
  41. K. T. Gahagan and J. G. A. Swartzlander, "Trapping of low-index microparticles in an optical vortex," J. Opt. Soc. Am. B 15, 524-534 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited