OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 4 — Apr. 1, 2007
  • pp: 750–755

Geometrical birefringence in square-lattice holey fibers having a core consisting of a multiple defect

Masashi Eguchi and Yasuhide Tsuji  »View Author Affiliations


JOSA B, Vol. 24, Issue 4, pp. 750-755 (2007)
http://dx.doi.org/10.1364/JOSAB.24.000750


View Full Text Article

Enhanced HTML    Acrobat PDF (646 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Geometrical birefringence in circular- and elliptical-hole square-lattice holey optical fibers having a core consisting of a multiple defect is investigated. The effect of unidirectional extension of the core area on the birefringence of these holey fibers (HFs) is discussed. We demonstrate that, as expected, a high birefringence can be induced in circular-hole HFs by unidirectional extension of the core area. In contrast, the maximum birefringence of elliptical-hole HFs, the holes of which have their major axes parallel to the long axis of the core, is achieved in a core structure that has a single defect. We also found that for elliptical holes having their major axes orthogonal to the long axis of the core, an exchange of the fast and slow modes occurs between the two orthogonally polarized fundamental modes by birefringence compensation.

© 2007 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 24, 2006
Revised Manuscript: November 14, 2006
Manuscript Accepted: November 16, 2006
Published: March 15, 2007

Citation
Masashi Eguchi and Yasuhide Tsuji, "Geometrical birefringence in square-lattice holey fibers having a core consisting of a multiple defect," J. Opt. Soc. Am. B 24, 750-755 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-4-750


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Gander, R. McBirde, J. Jones, D. Mogilevtsev, T. Birks, J. Knight, and P. Russell, "Experimental measurement of group velocity dispersion in photonic crystal fibre," Electron. Lett. 35, 63-43 (1999). [CrossRef]
  2. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Photon. Technol. Lett. 12, 807-809 (2000). [CrossRef]
  3. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, "Large mode area photonic crystal fibre," Electron. Lett. 34, 1347-1348 (1998). [CrossRef]
  4. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Optical properties of high-delta air-silica microstructure optical fibers," Opt. Lett. 25, 796-798 (2000). [CrossRef]
  5. P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, "2R-regenerative all-optical switch based on a highly nonlinear holey fiber," Opt. Lett. 26, 1233-1235 (2001). [CrossRef]
  6. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  7. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  8. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett. 25, 1325-1327 (2000). [CrossRef]
  9. M. J. Steel and R. M. Osgood, Jr., "Elliptical-hole photonic crystal fibers," Opt. Lett. 26, 229-231 (2001). [CrossRef]
  10. M. J. Steel and R. M. Osgood, Jr., "Polarization and dispersive properties of elliptical-hole photonic crystal fibers," J. Lightwave Technol. 19, 495-503 (2001). [CrossRef]
  11. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, "Optical properties of a low-loss polarization-maintaining photonic crystal fiber," Opt. Express 9, 676-680 (2001). [CrossRef] [PubMed]
  12. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 588-590 (2001). [CrossRef]
  13. P. R. Chaudhuri, V. Paulose, C. Zhao, and C. Lu, "Near-elliptic core polarization-maintaining photonic crystal fiber: modeling birefringence characteristics and realization," IEEE Photon. Technol. Lett. 16, 1301-1303 (2004). [CrossRef]
  14. N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, "Fabrication and study of microstructured optical fibers with elliptical holes," Opt. Lett. 29, 1336-1338 (2004). [CrossRef] [PubMed]
  15. M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbanczyk, J. Wójcik, M. Makara, J. Klimek, T. Naslilowski, F. Berghmans, and H. Thienpont, "Experimental and theoretical investigations of birefringent holey fibers with a triple defect," Appl. Opt. 44, 2652-2658 (2005). [CrossRef] [PubMed]
  16. J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their applications," J. Lightwave Technol. LT-4, 1071-1089 (1986). [CrossRef]
  17. A. Wang, A. K. George, J. F. Liu, and J. C. Knight, "Highly birefringent lamellar core fiber," Opt. Express 13, 5988-5993 (2005). [CrossRef] [PubMed]
  18. M. Y. Chen and R. J. Yu, "Polarization properties of elliptical-hole rectangular lattice photonic crystal fibers," J. Opt. A, Pure Appl. Opt. 6, 512-515 (2004). [CrossRef]
  19. Y. C. Liu and Y. Lai, "Optical birefringence and polarization dependent loss of square- and rectangular-lattice holey fibers with elliptical air holes: numerical analysis," Opt. Express 13, 225-235 (2005). [CrossRef] [PubMed]
  20. P. St. J. Russell, E. Marin, A. Díez, S. Guenneau, and A. B. Movchan, "Sonic band gaps in PCF preforms: enhancing the interaction of sound and light," Opt. Express 11, 2555-2560 (2003). [CrossRef] [PubMed]
  21. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic Publishers, 2003). [CrossRef]
  22. Z. Zhu and T. G. Brown, "Full-vectorial finite-difference analysis of microstructured fibers," Opt. Express 10, 853-864 (2002). [PubMed]
  23. S. Guo, F. Wu, S. Albin, H. Tai, and R. S. Rogowski, "Loss and dispersion analysis of microstructured fibers by finite-difference method," Opt. Express 12, 3341-3352 (2004). [CrossRef] [PubMed]
  24. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. AP-14, 302-307 (1966). [CrossRef]
  25. K. Hayata, M. Eguchi, M. Koshiba, and M. Suzuki, "Vectorial wave analysis of side-tunnel type polarization-maintaining optical fibers by variational finite elements," J. Lightwave Technol. LT-4, 1090-1096 (1986). [CrossRef]
  26. E. A. J. Marcatili, "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell Syst. Tech. J. 48, 2071-2102 (1968).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited