OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 4 — Apr. 1, 2007
  • pp: 887–894

Multiple-scale analysis of optical bistability in semiconductor periodic structures

Kiarash Zamani Aghaie, Mahdi Rabbani, and Mahmoud Shahabadi  »View Author Affiliations


JOSA B, Vol. 24, Issue 4, pp. 887-894 (2007)
http://dx.doi.org/10.1364/JOSAB.24.000887


View Full Text Article

Enhanced HTML    Acrobat PDF (190 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multiple-scale analysis is employed for the study of nonlinear wave propagation in periodic layered media. In a first step, wave propagation in each individual layer is modeled by a corresponding equivalent nonlinear transmission line. The multiple-scale analysis is then employed to establish a system of nonlinear equations for the amplitudes of the forward and backward waves in the transmission lines of the model mentioned. This system of nonlinear equations is solved with the aid of a continuation technique for derivation of transmission characteristics of the periodic structure. To study optical bistability, a parameter-switching algorithm is utilized for obtaining the solutions of the system including both stable and unstable ones. For the sake of verification, we have also utilized a nonlinear finite-difference time-domain (NFDTD) method to analyze the wave propagation in the aforementioned structure. While there is an acceptable agreement between the bistability results obtained using our method and the NFDTD, there is a considerable difference between our results and the ones derived using the conventional coupled-mode theory.

© 2007 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(050.2770) Diffraction and gratings : Gratings
(130.5990) Integrated optics : Semiconductors
(190.1450) Nonlinear optics : Bistability
(190.3270) Nonlinear optics : Kerr effect
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in

ToC Category:
Nonlinear Optics

History
Original Manuscript: May 26, 2006
Manuscript Accepted: November 30, 2006
Published: March 15, 2007

Citation
Kiarash Zamani Aghaie, Mahdi Rabbani, and Mahmoud Shahabadi, "Multiple-scale analysis of optical bistability in semiconductor periodic structures," J. Opt. Soc. Am. B 24, 887-894 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-4-887


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. H. Kim, N. S. Kim, Y. Chung, U. C. Paek, and W. T. Han, "All-optical switching application based on optical nonlinearity of Yb3+ doped aluminosilicate glass fiber with grating pair," Opt. Express 12, 651-656 (2004). [CrossRef] [PubMed]
  2. A. Melloni, M. Chinello, and M. Martinelli, "All-optical switching in phase-shifted fiber Bragg grating," IEEE Photon. Technol. Lett. 12, 42-44 (2000). [CrossRef]
  3. M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistability in nonlinear photonic crystals," Phys. Rev. E 66, 055601R (2002). [CrossRef]
  4. S. H. Jeong, T. Mizumoto, K. Nakatsuhara, M. Takenaka, and Y. Nakano, "Deep-ridge distributed feedback waveguide for polarization independent all-optical switching," Electron. Lett. 37, 498-499 (2001). [CrossRef]
  5. B. J. Eggleton, R. E. Slusher, J. B. Stark, and A. M. Vengsarkar, "All-optical switching in long-period fiber gratings," Opt. Lett. 22, 883-885 (1997). [CrossRef] [PubMed]
  6. M. Cada, J. He, B. Acklin, M. Proctor, D. Martin, F. Morier-Genoud, M. A. Dupertuis, and J. M. Glinski, "All-optical reflectivity tuning and logic gating in a GaAs/AlAs periodic layered structure," Appl. Phys. Lett. 60, 404-406 (1992). [CrossRef]
  7. D. Taverner, N. G. R. Broderick, J. J. Richardson, M. Ibsen, and R. I. Laming, "All-optical AND gate based on coupled gap-soliton formation in a fiber Bragg grating," Opt. Lett. 23, 259-261 (1998). [CrossRef]
  8. I. S. Nefedov, V. N. Gusyatnikov, P. K. Kashkarov, and A. M. Zheltikov, "Low-threshold photonic band gap optical logic gates," Laser Phys. 10, 640-644 (2000).
  9. I. Del Villar, I. R. Matías, and F. J. Arregui, "Fiber-optic multiple-wavelength filter based on one-dimensional photonic bandgap structures with defects," J. Lightwave Technol. 22, 1615-1621 (2004). [CrossRef]
  10. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials," Phys. Rev. Lett. 73, 1368-1371 (1994). [CrossRef] [PubMed]
  11. M. Scalora, J. P. Dowling, M. J. Bloemer, and C. M. Bowden, "The photonic band edge optical diode," J. Appl. Phys. 76, 2023-2026 (1994). [CrossRef]
  12. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994). [CrossRef]
  13. P. Yeh, A. Yariv, and C. Hong, "Electromagnetic propagation in periodic stratified media. I. General theory," J. Opt. Soc. Am. 67, 423-438 (1977). [CrossRef]
  14. M. Scalora, M. J. Bloemer, A. S. Pethal, J. P. Dowling, C. M. Bowden, and A. S. Manka, "Transparent, metallo-dielectric one-dimensional, photonic band-gap structures," J. Appl. Phys. 83, 2377-2383 (1998). [CrossRef]
  15. J. M. Bendickson, J. P. Dowling, and M. Scalora, "Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures," Phys. Rev. E 53, 4107-4121 (1996). [CrossRef]
  16. D. E. Pelinovsky, L. Brzozowski, and E. H. Sargent, "Transmission regimes of periodic nonlinear optical structures," Phys. Rev. E 62, R4536-R4539 (2000). [CrossRef]
  17. R.E.Slusher and B.J.Eggleton, eds., Nonlinear Photonic Crystals (Springer, 2003).
  18. J. He and M. Cada, "Optical bistability in semiconductor periodic structures," IEEE J. Quantum Electron. 27, 1182-1188 (1991). [CrossRef]
  19. L. Brillouin, Wave Propagation in Periodic Structures (McGraw-Hill, 1946).
  20. P. St. J. Russell and J. L. Archambault, "Field microstructure and spatial instability of photonic Bloch waves in nonlinear periodic media," J. Phys. III France 4, 2471-2491 (1994). [CrossRef]
  21. Z. L. Wang, X. J. Liu, J. Wu, and N. B. Ming, "An effective Bloch wave theory for light propagation in nonlinear media," Phys. Lett. A 248, 263-266 (1998). [CrossRef]
  22. C. Lixue, D. Xiaoxu, D. Weiqiang, Cao Liangcai, and L. Shutian, "Finite-difference time-domain analysis of optical bistability with low threshold in one-dimensional nonlinear photonic crystal with Kerr medium," Opt. Commun. 209, 491-500 (2002). [CrossRef]
  23. P. Tran, "Optical limiting and switching of short pulses by use of a nonlinear photonic bandgap structure with a defect," J. Opt. Soc. Am. B 14, 2589-2595 (1997). [CrossRef]
  24. J. Poon, E. Istrate, M. Allard, and E. H. Sargent, "Multiple-scale analysis of photonic crystal waveguides," IEEE J. Quantum Electron. 39, 778-786 (2005). [CrossRef]
  25. R. H. Goodman, M. I. Weinstein, and P. J. Holmes, "Nonlinear propagation of light in one-dimensional periodic structures," J. Nonlinear Sci. 11, 123-168 (2001).
  26. C. M. de Sterke, D. J. Salinas, and J. E. Sipe, "Coupled-mode theory for light propagation through deep nonlinear gratings," Phys. Rev. E 54, 1969-1989 (1996). [CrossRef]
  27. N. A. R. Bhat and J. E. Sipe, "Optical pulse propagation in nonlinear photonic crystals," Phys. Rev. E 64, 056604 (2001). [CrossRef]
  28. K. Zamani Aghaie and M. Shahabadi, "Perturbation analysis of plane-wave transmission through a nonlinear slab with Kerr-type nonlinearity," Opt. Express 13, 6587-6596 (2005). [CrossRef] [PubMed]
  29. Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, "Room-temperature optical nonlinearities in GaAs," Phys. Rev. Lett. 57, 2446-2449 (1986). [CrossRef] [PubMed]
  30. L. O. Chua, "A switching-parameter algorithm for finding multiple solutions of nonlinear resistive circuits," Int. J. Circuit Theory Appl. 4, 215-239 (1976). [CrossRef]
  31. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2001).
  32. G. P. Agrawal, Nonlinear Fiber Optics (Academic,1995).
  33. S. Adachi, "GaAs, AlAs, and AlxGa1−xAs; Material parameters for use in research and device applications," J. Appl. Phys. 58, R1-R29 (1985). [CrossRef]
  34. E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  35. A. Parini, G. Bellanca, S. Trillo, L. Saccomandi, and P. Bassi, "Transfer matrix and full Maxwell time domain analysis of nonlinear gratings," Opt. Quantum Electron. 36, 189-199 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited