OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 4 — Apr. 1, 2007
  • pp: 906–915

Analytical calculation of the Q factor for circular-grating microcavities

Asma Jebali, Daniel Erni, Stephan Gulde, Rainer F. Mahrt, and Werner Bächtold  »View Author Affiliations


JOSA B, Vol. 24, Issue 4, pp. 906-915 (2007)
http://dx.doi.org/10.1364/JOSAB.24.000906


View Full Text Article

Enhanced HTML    Acrobat PDF (551 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An exact and compact analytical formalism has been developed to calculate the Q factor for circular Bragg resonators. The electromagnetic fields, energy, and power flow have been expressed analytically relying on the transfer matrix coefficients. The Q factor has been derived for both TM and TE polarizations. The proposed formalism is then compared with two numerical methods.

© 2007 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.3120) Integrated optics : Integrated optics devices
(140.3410) Lasers and laser optics : Laser resonators
(140.4780) Lasers and laser optics : Optical resonators
(230.1480) Optical devices : Bragg reflectors
(230.5750) Optical devices : Resonators

ToC Category:
Optical Devices

History
Original Manuscript: May 5, 2006
Revised Manuscript: October 31, 2006
Manuscript Accepted: November 13, 2006
Published: March 15, 2007

Citation
Asma Jebali, Daniel Erni, Stephan Gulde, Rainer F. Mahrt, and Werner Bächtold, "Analytical calculation of the Q factor for circular-grating microcavities," J. Opt. Soc. Am. B 24, 906-915 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-4-906


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Houdré, and U. Oesterle, "High-finesse disk microcavity based on a circular Bragg reflector," Appl. Phys. Lett. 73, 1314-1316 (1998). [CrossRef]
  2. C. Wu, M. Svilans, M. Fallahi, T. Makino, J. Glinski, C. Maritan, and C. Blaauw, "Optically pumped surface-emitting DFB GalnAsP/InP lasers with circular grating," Electron. Lett. 27, 1819-1821 (1991). [CrossRef]
  3. T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. H. Anderson, and M. J. Rooks, "Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser," Appl. Phys. Lett. 60, 1921-1923 (1992). [CrossRef]
  4. C. Olson, P. L. Greene, G. W. Wicks, D. G. Hall, and S. Rishton, "High-order azimuthal spatial modes of concentric-circle-grating surface-emitting semiconductor lasers," Appl. Phys. Lett. 72, 1284-1286 (1998). [CrossRef]
  5. A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, "Lasing properties of disk microcavity based on a circular Bragg reflector," Appl. Phys. Lett. 75, 3051-3053 (1999). [CrossRef]
  6. M. Fallahi, F. Chatenoud, M. Dion, I. Templeton, R. Barber, and J. Thompson, "Circular-grating surface-emitting distributed Bragg reflector lasers on an InGaAs-GaAs structure for 0.98-μm applications," IEEE J. Sel. Top. Quantum Electron. 1, 382-386 (1995). [CrossRef]
  7. A. M. Shams-Zadeh-Amiri, X. Li, and W.-P. Huang, "Hankel transform-domain analysis of scattered fields in multilayer planar waveguides and lasers with circular gratings," IEEE J. Quantum Electron. 39, 1086-1098 (2003). [CrossRef]
  8. C. Bauer, H. Giessen, B. Schnabel, E. B. Kley, C. Schmitt, U. Scherf, and R. F. Mahrt, "A surface-emitting circular grating polymer laser," Adv. Mater. (Weinheim, Ger.) 13, 1161-1164 (2001). [CrossRef]
  9. N. Moll, C. Bauer, H. Giessen, B. Schnabel, E. B. Kley, U. Scherf, and R. F. Mahrt, "Evidence for bandedge lasing in a two-dimensional photonic bandgap polymer laser," Appl. Phys. Lett. 80, 734-736 (2002). [CrossRef]
  10. A. Jebali, R. F. Mahrt, N. Moll, D. Erni, C. Bauer, E. B. Kley, G. L. Bona, and W. Bächtold, "Lasing in organic circular grating structures," J. Appl. Phys. 96, 3043-3049 (2004). [CrossRef]
  11. G. F. Barlow, A. Shore, G. A. Turnbu, and I. D. W. Samuel, "Design and analysis of a low-threshold polymer circular-grating distributed-feedback laser," J. Opt. Soc. Am. B 21, 2142-2150 (2004). [CrossRef]
  12. G. A. Turnbull, A. Carleton, G. F. Barlow, A. Tahraoui, T. F. Krauss, A. Shore, and I. D. W. Samuel, "Design and analysis of a low-threshold polymer circular-grating distributed- feedback laser," J. Appl. Phys. 98, 023105 (2005). [CrossRef]
  13. J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "InGaAsP annular Bragg lasers: theory, applications, and modal properties," IEEE J. Sel. Top. Quantum Electron. 11, 476-484(2005). [CrossRef]
  14. J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "Lasing from a circular Bragg nanocavity with an ultrasmall modal volume," Appl. Phys. Lett. 86, 251101 (2005). [CrossRef]
  15. T. Erdogan and D. G. Hall, "Circularly symmetric distributed feedback semiconductor laser: An analysis," J. Appl. Phys. 68, 1435-1444 (1990). [CrossRef]
  16. T. Erdogan and D. G. Hall, "Circularly symmetric distributed feedback laser: coupled mode treatment of TE vector fields," IEEE J. Quantum Electron. 28, 612-623 (1992). [CrossRef]
  17. C. Wu, T. Makino, J. Glinski, R. Maciejko, and S. I. Najafi, "Self-consistent coupled-wave theory for circular gratings on planar dielectric waveguides," J. Lightwave Technol. 9, 1264-1277 (1991). [CrossRef]
  18. C. Wu, T. Makino, R. Maciejko, S. I. Najafi, and M. Svilans, "Simplified coupled-wave equations for cylindrical waves in circular grating planar waveguides," J. Lightwave Technol. 10, 1575-1589 (1992). [CrossRef]
  19. X. M. Gong, A. K. Chan, and H. F. Taylor, "Lateral mode discrimination in surface emitting DBR lasers with cylindrical symmetry," IEEE J. Quantum Electron. 30, 1212-1218 (1994). [CrossRef]
  20. M. Toda, "Single-mode behavior of a circular grating for potential disk-shaped DFB lasers," IEEE J. Quantum Electron. 26, 473-481 (1990). [CrossRef]
  21. A. Yariv, ed. Optical Electronics in Modern Communications (Oxford U. Press, 1997).
  22. P. L. Greene and D. G. Hall, "Effects on radiation on circular-grating DFB lasers--Part I: coupled-mode equations," IEEE J. Quantum Electron. 37, 353-364 (2001). [CrossRef]
  23. P. L. Greene and D. G. Hall, "Effects on radiation on circular-grating DFB lasers--Part II: device and pump-beam parameters," IEEE J. Quantum Electron. 37, 365-371 (2001). [CrossRef]
  24. J. Scheuer and A. Yariv, "Coupled-waves approach to the design and analysis of Bragg and photonic crystal annular resonators," IEEE J. Quantum Electron. 39, 1555-1561 (2003). [CrossRef]
  25. P. Ye, A. Yariv, and E. Marom, "Theory of Bragg fiber," J. Opt. Soc. Am. 68, 1196-1201 (1978). [CrossRef]
  26. T. Kawanishi and M. Izutsu, "Coaxial periodic optical waveguide," Opt. Express 7, 10-22 (2000). [CrossRef] [PubMed]
  27. E. X. Ping, "Transmission of electromagnetic waves in planar, cylindrical, and spherical dielectric layer systems and their applications," J. Appl. Phys. 76, 7188-7194 (1994). [CrossRef]
  28. M. A. Kaliteevski, R. A. Abram, V. V. Nikolaev, and G. S. Sokolovski, "Bragg reflectors for cylindrical waves," J. Mod. Opt. 46, 875-890 (1999). [CrossRef]
  29. C. C. Wang and Z. Ye, "Spontaneous emission in cylindrical periodically-layered structures," Phys. Status Solidi A 174, 527-540 (1999). [CrossRef]
  30. D. Ochoa, R. Houdré, M. Ilegems, H. Benisty, T. F. Krauss, and C. J. M. Smith, "Diffraction of cylindrical Bragg reflectors surrounding an in-plane semiconductor microcavity," Phys. Rev. B 61, 4806-4812 (2000). [CrossRef]
  31. J. Scheuer and A. Yariv, "Annular Bragg defect mode resonators," J. Opt. Soc. Am. B 20, 2285-2291 (2003). [CrossRef]
  32. R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific, 1996), pp. 27-34.
  33. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003). [CrossRef] [PubMed]
  34. T. Asano, B.-S. Song, and S. Noda, "Analysis of the experimental Q factors (∼1 million) of photonic crystal nanocavities," Opt. Express 14, 1996-2002 (2006). [CrossRef] [PubMed]
  35. D. J. Brady, G. C. Papen, and J. E. Sipe, "Spherical distributed dielectric resonators," J. Opt. Soc. Am. B 10, 644-657 (1993). [CrossRef]
  36. M. A. Kaliteevski, S. Brand, R. A. Abram, and V. V. Nikolaev, "Optical eigenmodes of a multilayered spherical microcavity," J. Mod. Opt. , 48, 1503-1516 (2001). [CrossRef]
  37. Y. Xu, W. Liang, A. Yariv, J. G. Fleming, and S.-Y. Lin, "High-quality-factor Bragg onion resonators with omnidirectional reflector cladding," Opt. Lett. 28, 2144-2146 (2003). [CrossRef] [PubMed]
  38. X. H. Zheng, "Theory of two-dimensional 'fingerprint' resonators," Electron. Lett. 25, 1311-1312 (1989). [CrossRef]
  39. X. H. Zheng and S. Lacroix, "Mode coupling in circular-cylindrical system and its application to fingerprint resonators," J. Lightwave Technol. 8, 1509-1516 (1990). [CrossRef]
  40. D. Englund, I. Fushman, and J. Vuckovic, "General recipe for designing photonic crystal cavities," Opt. Express 13, 5961-5975 (2005). [CrossRef] [PubMed]
  41. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  42. L. Poladian, F. Ladouceur, and P. D. Miller, "Effects of surface roughness on gratings," J. Opt. Soc. Am. B 14, 1339-1344 (1997). [CrossRef]
  43. W. Bogaerts, P. Bienstmann, and R. Baets, "Scattering at sidewall roughness in photonic crystal slabs," Opt. Lett. 28, 689-691 (2003). [CrossRef] [PubMed]
  44. Note that, in reality, the coefficients ξmj and ηmj have units of Vm−1.
  45. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972).
  46. R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, 1987).
  47. K. Zhang and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 1998).
  48. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, 1980).
  49. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge U. Press, 1962).
  50. A. Erdélyi, M. F. Oberhettinger, and F. G. Tricomi, Tables of Integral Transforms. Based, in Part, on Notes Left by Harry Bateman and Compiled by the Staff of the Bateman Manuscript Project (McGraw-Hill, 1954). [PubMed]
  51. It is worth mentioning that finding a suitable physical measure to probe the spectral response of a leaky cavity accordingly is related to a more general issue than expected; in fact, the FWHM estimation of the cavity resonance essentially depends on the technical setup to access the corresponding field quantity and, hence, to the problem of proper normalization (or appropriate excitation) of the cavity mode. Thus the spectrally determined Q factors become context dependent. Given the normalization of the wave amplitudes in the cavity center, as proposed by condition , the resulting spectral response of the total field energy Wm(λ) yields a physically counterintuitive, but mathematically correct, drop at resonance.
  52. COMSOL Multiphysics, http://www.comsol.com
  53. S. Gulde, A. Jebali, and N. Moll, "Optimization of ultrafast all-optical resonator switching," Opt. Express 13, 9502-9515 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited