OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 5 — May. 1, 2007
  • pp: 1037–1041

Generation of a continuous-wave pulse train at a repetition rate of 17.6 THz

Shin-ichi Zaitsu, Chihiro Eshima, Kazuki Ihara, and Totaro Imasaka  »View Author Affiliations

JOSA B, Vol. 24, Issue 5, pp. 1037-1041 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (341 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrated that a 17.6 THz pulselike intensity modulation resulted from the coherent superposition of multifrequency continuous-wave emissions generated from a hydrogen-filled high-finesse cavity through a cascade-stimulated Raman scattering process. We pointed out that the complete phase-locked operation was hindered by the intracavity dispersion that caused nonequal separations between adjacent emission lines.

© 2007 Optical Society of America

OCIS Codes
(140.3550) Lasers and laser optics : Lasers, Raman
(140.4050) Lasers and laser optics : Mode-locked lasers
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 11, 2006
Revised Manuscript: January 15, 2007
Manuscript Accepted: January 19, 2007
Published: April 17, 2007

Shin-ichi Zaitsu, Chihiro Eshima, Kazuki Ihara, and Totaro Imasaka, "Generation of a continuous-wave pulse train at a repetition rate of 17.6THz," J. Opt. Soc. Am. B 24, 1037-1041 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. B. Hu and M. G. Nuss, 'Imaging with terahertz waves,' Opt. Lett. 20, 1716-1718 (1995). [CrossRef] [PubMed]
  2. A. Hasegawa, 'Ultrahigh-speed optical communications,' Phys. Plasmas 8, 1763-1773 (2001). [CrossRef]
  3. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, 'Nonlinear optics for high-speed digital information processing,' Science 286, 1523-1528 (1999). [CrossRef] [PubMed]
  4. S. Arahira, S. Oshiba, Y. Matsui, T. Kunii, and Y. Ogawa, 'Terahertz-rate optical pulse generation from a passively mode-locked semiconductor laser diode,' Opt. Lett. 19, 834-836 (1994). [CrossRef] [PubMed]
  5. D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, and J. H. Marsh, 'Terahertz repetition frequencies from harminic mode-locked monolithic compound-cavity laser diodes,' Appl. Phys. Lett. 78, 3571-3573 (2001). [CrossRef]
  6. M. Hyodo, K. S. Abedin, and N. Onodera, 'Fourier synthesis of 1.8-THz optical-pulse trains by phase locking of three independent semiconductor lasers,' Opt. Lett. 26, 340-342 (2001). [CrossRef]
  7. Y. Ozeki, S. Takasaka, J. Hiroishi, R. Suguzaki, T. Yagi, M. Sakano, and S. Namiki, 'Generation of 1THz repetition rate, 97fs optical pulse train based on comb-like profiled fibre,' Electron. Lett. 41, 1048-1050 (2005). [CrossRef]
  8. S. E. Harris and A. V. Sokolov, 'Subfemtosecond pulse generation by molecular modulation,' Phys. Rev. Lett. 81, 2894-2897 (1998). [CrossRef]
  9. M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, 'Generation of a single-cycle optical pulse,' Phys. Rev. Lett. 94, 033904 (2005). [CrossRef] [PubMed]
  10. M. Katsuragawa, K. Yokoyama, T. Onose, and K. Misawa, 'Generation of a 10.6-THz ultrahigh-repetition-rate train by synthesizing phase-coherent Raman-sidebands,' Opt. Express 13, 5628-5634 (2005). [CrossRef] [PubMed]
  11. K. Shinzen, Y. Hirakawa, and T. Imasaka, 'Generation of highly repetitive optical pulses based on intracavity four-wave Raman mixing,' Phys. Rev. Lett. 87, 223901 (2001). [CrossRef] [PubMed]
  12. K. Ihara, C. Eshima, S. Zaitsu, S. Kamitomo, K. Shinzen, Y. Hirakawa, and T. Imasaka, 'Molecular-optic modulator,' Appl. Phys. Lett. 88, 074101 (2006). [CrossRef]
  13. J. K. Brasseur, K. S. Repasky, and J. L. Carlsten, 'Continuous-wave Raman laser in H2,' Opt. Lett. 23, 367-369 (1998). [CrossRef]
  14. T. Hattori, Y. Kawashima, M. Daikoku, H. Inoue, and H. Nakatsuka, 'Autocorrelation measurement of femtosecond optical pulses based on two-photon photoemission in a photomultiplier tube,' Jpn. J. Appl. Phys., Part 1 39, L809-L811 (2000). [CrossRef]
  15. G. S. He and S. H. Liu, Physics of Nonlinear Optics (World Scientific, 1999).
  16. R. W. Minck, E. E. Hagenlocker, and W. G. Rado, 'Stimulated pure rotational Raman scattering in deuterium,' Phys. Rev. Lett. 17, 229-231 (1966). [CrossRef]
  17. K. S. Repasky, J. K. Brasseur, L. Meng, and J. L. Carlsten, 'Performance and design of an off-resonant continuous-wave Raman laser,' J. Opt. Soc. Am. B 15, 1667-1673 (1998). [CrossRef]
  18. The longitudinal modes contributing to the generation of the Stokes emissions differed between the spectrum shown in Fig. 2(a) and that shown in Fig. 3(b). Owing to the bandwidth of a Raman gain, the efficiency for both Stokes emissions varied depending on the related longitudinal modes even when the pump power was constant.
  19. C. Spielmann, L. Xu, and F. Krausz, 'Measurement of interferometric autocorrelations: comment,' Appl. Opt. 36, 2523-2525 (1997). [CrossRef] [PubMed]
  20. We used the formula described in E. R. Peck and S. Huang, 'Refractivity and dispersion of hydrogen in the visible and near infrared,' J. Opt. Soc. Am. 67, 1550-1554 (1977) to calculate the difference between Δvps1 and Δνs1−s2. At the wavelength of P (770.0 nm), n=1.000137506, and dn/dλ=−4.67008. At the wavelength of S1 (806.5nm), n=1.000137345, and dn/dλ=−4.04611. At the wavelength of S2 (846.5nm), n=1.000137198 and dn/dλ=−3.50354. [CrossRef]
  21. We estimate that the suppression of the difference between Δvps1 and Δνs1−s2 below the linewidth of a longitudinal mode of a high-finesse cavity (~500kHz) over a range of 70THz, which includes five Raman emissions, needs the third-order dispersion to be less than 0.5fs3.
  22. R. W. Boyd, Nonlinear Optics (Academic, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited