OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 5 — May. 1, 2007
  • pp: 1066–1074

Annealing effect on the optical properties and laser-induced damage resistance of solgel-derived Zr O 2 films

Liping Liang, Yao Xu, Lei Zhang, Yonggang Sheng, Dong Wu, and Yuhan Sun  »View Author Affiliations

JOSA B, Vol. 24, Issue 5, pp. 1066-1074 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (266 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By modifying some structural characteristics, the annealing process can have considerable effects on the optical performance of the solgel-derived Zr O 2 xerogel films. Annealing at increasing temperature from 150 ° C to 750 ° C gives rise to first an increase of refractive index from 1.63 (at 633 nm ) to 1.93 and then a decrease to 1.86 with the watershed temperature of 550 ° C . This can be associated with the evolutions in both packing density and structure order of the films due to the removal of organic segments, material crystallization, and phase transformation. The optical bandgap is found to decrease from 5.63 to 4.97 eV over the entire temperature range, suggesting an increasing nonlinear absorption in the case of high-power laser irradiation. Moreover, annealing completely destroys the network structure of the xerogel films that is suspected to facilitate the energy relaxation. Thus, the combined effect of the greatly weakened endurance and possible enhanced absorption to irradiation laser leads to a monotonous decrease of the laser-induced damage threshold from 55 to 10 J cm 2 (at 1053 nm , 10 ns pulse duration, and R/1 testing mode).

© 2007 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(160.4670) Materials : Optical materials
(160.6060) Materials : Solgel
(240.6490) Optics at surfaces : Spectroscopy, surface
(310.3840) Thin films : Materials and process characterization

ToC Category:

Original Manuscript: July 7, 2006
Revised Manuscript: December 18, 2006
Manuscript Accepted: January 10, 2007
Published: April 17, 2007

Liping Liang, Yao Xu, Lei Zhang, Yonggang Sheng, Dong Wu, and Yuhan Sun, "Annealing effect on the optical properties and laser-induced damage resistance of solgel-derived ZrO2 films," J. Opt. Soc. Am. B 24, 1066-1074 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Thomas, 'Preparation of dielectric HR mirrors from colloid oxide suspensions containing organic polymer binders,' in Sol-Gel Optics III, J.D. Mackenzie, ed., Proc. SPIE 2288, 50-55 (1994).
  2. Ph. Belleville, C. Bonnin, and J. J. Priotton, 'Room-temperature mirror preparation using sol-gel chemistry and laminar-flow coating technique,' J. Sol-Gel Sci. Technol. 19, 223-226 (2000). [CrossRef]
  3. Q. Y. Zhang, J. Shen, J. Wang, G. M. Wu, and L. Y. Chen, 'Sol-gel derived ZrO2-SiO2 highly reflective mirrors,' Int. J. Inorg. Mater. 2, 319-323 (2000). [CrossRef]
  4. D. Grosso and P. A. Seromon, 'Scandia optical mirrors for application at 351 nm,' Thin Solid Films 368, 116-124 (2000). [CrossRef]
  5. Ph. Belleville, Ph. Prené, C. Bonnin, L. Beaurain, Y. Montouillout, and É. Lavastre, 'How smooth chemistry allows high power laser optical coating preparation,' in Advances in Optical Thin Films, C. Amra, N. Kaiser, and H.A. Macleod, eds. Proc. SPIE 5250, 196-202 (2004).
  6. G. L. Tian, J. B. Huang, T. Wang, H. B. He, and J. D. Shao, 'Microstructure and laser-damage threshold of ZrO2 mirrors dependence on annealing temperature,' Appl. Surf. Sci. 239, 201-208 (2005). [CrossRef]
  7. D. W. Zhang, S. H. Fan, Y. A. Zhao, W. D. Gao, J. D. Shao, R. Y. Fan, Y. J. Wang, and Z. X. Fan, 'High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,' Appl. Surf. Sci. 243, 232-237 (2005). [CrossRef]
  8. M. Reichling, A. Bodemann, and N. Kaiser, 'Defect induced laser damage in oxide multilayer mirrors for 248 nm,' Thin Solid Films 320, 264-279 (1998). [CrossRef]
  9. Y. A. Zhao, W. D. Gao, J. D. Shao, and Z. X. Fan, 'Roles of absorbing defects and structural defects in multilayer under single-shot and multi-shot laser radiation,' Appl. Surf. Sci. 227, 275-281 (2004). [CrossRef]
  10. Y. Xu, B. Zhang, W. H. Fan, D. Wu, and Y. H. Sun, 'Sol-gel broadband anti-reflective single-layer silica films with high laser damage threshold,' Thin Solid Films 440, 180-183 (2003). [CrossRef]
  11. Y. Xu, L. Zhang, D. Wu, Y. H. Sun, Z. X. Huang, X. D. Jiang, X. F. Wei, Z. H. Li, B. Z. Dong, and Z. H. Wu, 'Durable sol-gel antireflective films with high laser-induced damage thresholds for inertial confinement fusion,' J. Opt. Soc. Am. B 22, 905-912 (2005). [CrossRef]
  12. M. C. Ferrara, M. R. Perrone, M. L. Protopapa, J. Sancho-Parramon, S. Bosch, and S. Mazzarelli, 'High mechanical damage resistant sol-gel mirror for high power lasers,' in Advances in Optical Thin Films, C. Amra, N. Kaiser, and H.A. Macleod, eds., Proc. SPIE 5250, 537-545 (2004).
  13. Y. A. Zhao, T. Wang, D. P. Zhang, S. H. Fan, J. D. Shao, and Z. X. Fan, 'Laser conditioning of ZrO2:Y2O3/SiO2 mirror coatings prepared by E-beam evaporation,' Appl. Surf. Sci. 239, 171-175 (2005). [CrossRef]
  14. G. S. Kathryn and S. L. Jeffrey, 'Characterization of titanium and zirconium valerate sol-gel films,' Chem. Mater. 6, 890-898 (1994). [CrossRef]
  15. G. Ehrhart, B. Capoen, O. Robbe, Ph. Boy, S. Turrell, and M. Bouazaoui, 'Structural and optical properties of n-propoxide sol-gel derived ZrO2 thin films,' Thin Solid Films 496, 227-233 (2006). [CrossRef]
  16. J. Méndez-Vivar, R. Mendoze-Serna, and L. Valdez-Castro, 'Control of the polymerization process of multicomponent (Si, Ti, Zr) sols using chelating agents,' J. Non-Cryst. Solids 288, 200-209 (2001). [CrossRef]
  17. J. P. Zhao, W. H. Fan, D. Wu, and Y. H. Sun, 'Synthesis of highly stabilized zirconia sols from zirconium n-propoxide-diglycol system,' J. Non-Cryst. Solids 261, 15-20 (2000). [CrossRef]
  18. H. G. Floch, J. P. Priotton, and I. M. Thomas, 'Optical coatings prepared from colloidal media,' Thin Solid Films 175, 173-178 (1989). [CrossRef]
  19. W. M. Liu, Y. X. Chen, C. F. Ye, and P. Y. Zhang, 'Preparation and characterization of doped sol-gel zirconia films,' Ceram. Int. 28, 349-354 (2002). [CrossRef]
  20. A. Hartridge, M. Ghanashyam Krishna, and A. K. Bhattacharya, 'Temperature and ionic size dependence on the structure and optical properties of nanocrystalline lanthanide doped zirconia thin films,' Thin Solid Films 384, 254-260 (2001). [CrossRef]
  21. W. C. Liu, D. Wu, A. D. Li, H. Q. Ling, Y. F. Tang, and N. B. Ming, 'Annealing and doping effects on structure and optical properties of sol-gel derived ZrO2 thin films,' Appl. Surf. Sci. 191, 181-187 (2002). [CrossRef]
  22. R. Swanepoel, 'Determination of the thickness and optical constants of amorphous silicon,' J. Phys. E 16, 1214-1222 (1983). [CrossRef]
  23. S. H. Wemple and M. DiDomenico, Jr., 'Behavior of the electronic dielectric constant in covalent and ionic materials,' Phys. Rev. B 3, 1338-1351 (1971). [CrossRef]
  24. J. M. González-Leal, R. Prieto-Alcón, J. A. Angel, and E. Márquez, 'Optical properties of thermally evaporated amorphous As40S60-xSex films,' J. Non-Cryst. Solids 315, 134-143 (2003). [CrossRef]
  25. N. K. Sahoo, S. Thakur, and R. B. Tokas, 'Superior refractive index tailoring properties in composite ZrO2/SiO2 thin film systems achieved through reactive electron beam codeposition process,' Appl. Surf. Sci. 253, 618-626 (2006). [CrossRef]
  26. S. Shukla and S. Seal, 'Thermodynamic tetragonal phase stability in sol-gel derived nanodomains of pure zirconia,' J. Phys. Chem. B 108, 3395-3399 (2004). [CrossRef]
  27. N. Tigau, V. Ciupina, and G. Prodan, 'The effect of substrate temperature on the optical properties of polycrystalline Sb2O3 thin films,' J. Cryst. Growth 277, 529-535 (2005). [CrossRef]
  28. J. C. Manifacier, J. Gasiot, and J. P. Fillard, 'A simple method for the determination of the optical constants n,k and the thickness of a weakly absorbing thin film,' J. Phys. E 9, 1002-1004 (1976). [CrossRef]
  29. L. F. Cueto, E. Sánchez, L. M. Torres-Martínez, and G. A. Hirata, 'On the optical, structural, and morphological properties of ZrO2 and TiO2 dip-coated thin films supported on glass substrates,' Mater. Charact. 55, 263-271 (2005). [CrossRef]
  30. S. Bhaskar, S. B. Majumder, M. Jain, P. S. Dobal, and R. S. Katiyar, 'Studies on the structural, microstructural and optical properties of sol-gel derived lead lanthanum titanate thin films,' Mater. Sci. Eng., B 87, 178-190 (2001). [CrossRef]
  31. Y. Sorek, M. Zevin, and R. Reisfeld, 'Zirconia and zirconia-ORMOSIL planar waveguides prepared at room temperature,' Chem. Mater. 9, 670-676 (1997). [CrossRef]
  32. M. K. Mishra, B. Tyagi, and R. V. Jasra, 'Effect of synthetic parameters on structure, textural, and catalytic properties of nanocrystalline sulfated zirconia prepared by sol-gel technique,' Ind. Eng. Chem. Res. 42, 5727-5736 (2003). [CrossRef]
  33. K. G. Severin, J. S. Ledford, B. A. Torgerson, and K. A. Berglund, 'Characterization of titanium and zirconium valerate sol-gel films,' Chem. Mater. 6, 890-898 (1994). [CrossRef]
  34. Y. X. Hao, J. S. Li, X. J. Yang, X. Wang, and L. D. Lu, 'Preparation of ZrO2-Al2O3 composite membrane by sol-gel process and their characterization,' Mater. Sci. Eng., A 367, 243-247 (2004). [CrossRef]
  35. M. J. Li, Z. C. Feng, G. Xiong, P. L. Ying, Q. Xin, and C. Li, 'Phase transformation in the surface region of zirconia detected by UV Raman spectroscopy,' J. Phys. Chem. B 105, 8107-8111 (2001). [CrossRef]
  36. D. Pamu, M. Ghanashyam Krishna, K. C. James Raju, and A. K. Bhatnagar, 'Ambient temperature growth of nanocrystalline titanium dioxide thin films,' Solid State Commun. 135, 7-10 (2005). [CrossRef]
  37. S. Jana and P. K. Biswas, 'Characterization of oxygen deficiency and trivalent zirconium in sol-gel derived zirconia films,' Mater. Lett. 30, 53-58 (1997). [CrossRef]
  38. V. N. Strekalov, 'Absorption of laser light by ions as a mechanism of optical damage in solids,' in Laser-Induced Damage in Optical Materials, G.Exarhos, A.Guenther, M.Kozlowski, K.L. Lewis, and M.J. Soileau, eds., Proc. SPIE 3244, 26-30 (1997).
  39. V. N. Strekalov, 'The path integrals method and description of valence band impact ionization under multiphoton heating of electrons,' in Laser-Induced Damage in Optical Materials, G. Exarhos, A. Guenther, M. Kozlowski, K.L. Lewis, and M.J. Soileau, eds., Proc. SPIE 3578, 256-263 (1998).
  40. C. W. Carr, H. B. Radousky, and S. G. Demos, 'Experimental study of wavelength dependent damage threshold in DKDP,' in Laser-Induced Damage in Optical Materials, G. Exarhos, A. Guenther, N. Kaiser, K.L. Lewis, M.J. Soileau, C.J. Stolz, A. Giesen, and H. Weber, eds., Proc. SPIE 4932, 385-389 (2003).
  41. D. Li, Z. Q. Zhu, X. Y. Fu, and F. M. Qiu, 'Relations between the laser induced damage to optical thin film and the material band-gap,' Opto-Electron. Eng. 26, 58-62 (1999).
  42. R. Brenier and A. Gagnaire, 'Densification and aging of ZrO2 films prepared by sol-gel,' Thin Solid Films 392, 142-148 (2001). [CrossRef]
  43. H. K. Pulker and S. Schlichtherle, 'Density related properties of metal oxide films,' in Advances in Optical Thin Films, C. Amra and N. Kaiser, eds., Proc. SPIE 5250, 1-11 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited