OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 5 — May. 1, 2007
  • pp: 1075–1079

Poled-glass devices: influence of surfaces and interfaces

Jacob Fage-Pedersen, Rune Jacobsen, and Martin Kristensen  »View Author Affiliations


JOSA B, Vol. 24, Issue 5, pp. 1075-1079 (2007)
http://dx.doi.org/10.1364/JOSAB.24.001075


View Full Text Article

Enhanced HTML    Acrobat PDF (434 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Devices in periodically poled glass must have a large periodic variation of the built-in field. We show that the periodic variation can be severely degraded by charge dynamics taking place at the external (glass–air) interface or at internal (glass–glass) interfaces if the interfaces have imperfections. The problem of the external interface can be solved by poling with periodic electrodes that are buried inside the glass, in many cases improving the poling efficiency dramatically. Internal interfaces can be addressed by the proper choice of waveguide design and processing. Without poling the device, one can reveal the existence of imperfect interfaces by use of electric field induced second-harmonic generation.

© 2007 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(160.4330) Materials : Nonlinear optical materials
(160.6030) Materials : Silica
(190.2620) Nonlinear optics : Harmonic generation and mixing
(230.4000) Optical devices : Microstructure fabrication
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Materials

History
Original Manuscript: August 15, 2006
Revised Manuscript: November 28, 2006
Manuscript Accepted: December 18, 2006
Published: April 17, 2007

Citation
Jacob Fage-Pedersen, Rune Jacobsen, and Martin Kristensen, "Poled-glass devices: influence of surfaces and interfaces," J. Opt. Soc. Am. B 24, 1075-1079 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-5-1075


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Margulis, F. Garcia, E. Hering, L. Guedes Valente, B. Lesche, F. Laurell, and I. Carvalho, 'Poled glasses,' MRS Bull. 23, 31-35 (1998).
  2. A. Kudlinski, G. Martinelli, and Y. Quiquempois, 'Time evolution of second-order nonlinear profiles induced within thermally poled silica samples,' Opt. Lett. 30, 1039-1041 (2005). [CrossRef] [PubMed]
  3. D. Faccio, V. Pruneri, and P. Kazansky, 'Dynamics of the second-order nonlinearity in thermally poled silica glass,' Appl. Phys. Lett. 79, 2687-2689 (2001). [CrossRef]
  4. N. Myren and W. Margulis, 'Time evolution of frozen-in field during poling of fiber with alloy electrodes,' Opt. Express 13, 3438-3444 (2005). [CrossRef] [PubMed]
  5. P. Blazkiewicz, W. Xu, D. Wong, and S. Fleming, 'Mechanism for thermal poling in twin-hole silicate fibers,' J. Opt. Soc. Am. B 19, 870-874 (2002). [CrossRef]
  6. F. C. Garcia, L. Vogelaar, and R. Kashyap, 'Poling of a channel waveguide,' Opt. Express 11, 3041-3047 (2003). [CrossRef] [PubMed]
  7. Y. Ren, C. Marckmann, R. Jacobsen, and M. Kristensen, 'Poling effect of a charge-trapping layer in glass waveguides,' Appl. Phys. B 78, 371-375 (2004). [CrossRef]
  8. Y. Quiquempois, N. Godbout, and S. Lacroix, 'Thermal poling of thin silica glass films: design rules for optical fibers and waveguides,' Phys. Rev. A 71, 063809 (2005). [CrossRef]
  9. H. An and S. Fleming, 'Investigation of the spatial distribution of second-order nonlinearity in thermally poled optical fibers,' Opt. Express 13, 3500-3505 (2005). [CrossRef] [PubMed]
  10. A. Ozcan, M. Digonnet, G. Kino, F. Ay, and A. Aydinli, 'Characterization of thermally poled germanosilicate thin films,' Opt. Express 12, 4698-4708 (2004). [CrossRef] [PubMed]
  11. S. Chao, H.-Y. Chen, Y.-H. Yang, Z.-W. Wang, C. T. Shih, and H. Niu, 'Quasi-phase-matched second-harmonic generation in Ge-ion implanted fused silica channel waveguide,' Opt. Express 13, 7091-7096 (2005). [CrossRef] [PubMed]
  12. J. Fage-Pedersen, R. Jacobsen, and M. Kristensen, 'Planar glass devices for efficient periodic poling,' Opt. Express 13, 8514-8519 (2005). [CrossRef] [PubMed]
  13. R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P. F. Mckee, 'Phase-matched second-harmonic generation by periodic poling of fused silica,' Appl. Phys. Lett. 64, 1332-1334 (1994). [CrossRef]
  14. V. Pruneri, G. Bonfrate, P. Kazansky, D. Richardson, N. Broderick, J. De Sandro, C. Simonneau, P. Vidakovic, and J. Levenson, 'Greater than 20%-efficient frequency doubling of 1532 nm nanosecond pulses in quasi-phase-matched germanosilicate optical fibers,' Opt. Lett. 24, 208-210 (1999). [CrossRef]
  15. C. Corbari, A. Canagasabey, M. Ibsen, F. Mezzapesa, C. Codemard, J. Nilsson, and P. Kazansky, 'All-fiber frequency conversion in long periodically poled silica fibers,' Optical Fiber Communication Conference (Optical Society of America, 2005), Vol. 6.
  16. A. C. Adams, 'Dielectric and polysilicon film deposition,' in VLSI Technology, S.M.Sze, ed. (McGraw-Hill, 1988).
  17. C. Marckmann, R. Shim, Y. Ren, and M. Kristensen, 'Interpretation of high poling effects with short lifetimes,' in Proceedings of the 11th European Conference on Integrated Optics (ECIO, 2003), Vol. 1, pp. 301-304.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited