OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 5 — May. 1, 2007
  • pp: 1091–1100

Shaper-assisted collinear SPIDER: fast and simple broadband pulse compression in nonlinear microscopy

Bernhard von Vacano, Tiago Buckup, and Marcus Motzkus  »View Author Affiliations

JOSA B, Vol. 24, Issue 5, pp. 1091-1100 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (783 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In situ characterization and control of the phase of broadband femtosecond pulses in microscopy can be achieved with a novel simplified scheme based on spectral shear interferometry for direct electric field reconstruction (SPIDER): the use of a femtosecond pulse shaper eliminates the need for an interferometer setup, allows dispersion-free SPIDER operation and at the same time compression even of complex pulses. Beyond compression, the scheme allows precise phase control at the site of the microscopic experiment. We present the underlying principles, design considerations, and details of the experimental implementation, and show the successful operation of the shaper-assisted collinear (SAC) SPIDER to characterize, compress, and tailor broadband femtosecond pulses in situ. The reliability is demonstrated by comparison with independent cross-frequency-resolved optical gating measurement, and improved multiphoton imaging with SAC-SPIDER-compressed pulses is shown. Its simplicity and versatility make SAC-SPIDER an extremely useful tool for next-generation broadband nonlinear microscopy.

© 2007 Optical Society of America

OCIS Codes
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(180.0180) Microscopy : Microscopy
(320.5520) Ultrafast optics : Pulse compression
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:

Original Manuscript: October 25, 2006
Manuscript Accepted: January 3, 2007
Published: April 17, 2007

Virtual Issues
Vol. 2, Iss. 6 Virtual Journal for Biomedical Optics

Bernhard von Vacano, Tiago Buckup, and Marcus Motzkus, "Shaper-assisted collinear SPIDER: fast and simple broadband pulse compression in nonlinear microscopy," J. Opt. Soc. Am. B 24, 1091-1100 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, 'Nonlinear magic: multiphoton microscopy in the biosciences,' Nat. Biotechnol. 21, 1369-1377 (2003). [CrossRef] [PubMed]
  2. J. Squier and M. Muller, 'High resolution nonlinear microscopy: a review of sources and methods for achieving optimal imaging,' Rev. Sci. Instrum. 72, 2855-2867 (2001). [CrossRef]
  3. G. J. Brakenhoff, M. Muller, and J. Squier, 'Femtosecond pulse width control in microscopy by two-photon absorption autocorrelation,' J. Microsc. 179, 253-260 (1995). [CrossRef]
  4. C. Soeller and M. B. Cannell, 'Construction of a two-photon microscope and optimisation of illumination pulse duration,' Pfluegers Arch. 432, 555-561 (1996). [CrossRef]
  5. R. Wolleschensky, T. Feurer, R. Sauerbrey, and U. Simon, 'Characterization and optimization of a laser-scanning microscope in the femtosecond regime,' Appl. Phys. B 67, 87-94 (1998). [CrossRef]
  6. M. Muller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, 'Dispersion precompensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,' J. Microsc. 191, 141-150 (1998). [CrossRef] [PubMed]
  7. A. M. Weiner, 'Femtosecond pulse shaping using spatial light modulators,' Rev. Sci. Instrum. 71, 1929-1960 (2000). [CrossRef]
  8. D. Yelin, D. Meshulach, and Y. Silberberg, 'Adaptive femtosecond pulse compression,' Opt. Lett. 22, 1793-1795 (1997). [CrossRef]
  9. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, 'Femtosecond pulse shaping by an evolutionary algorithm with feedback,' Appl. Phys. B 65, 779-782 (1997). [CrossRef]
  10. D. Zeidler, S. Frey, K. L. Kompa, and M. Motzkus, 'Evolutionary algorithms and their application to optimal control studies,' Phys. Rev. A 64, 023420 (2001). [CrossRef]
  11. D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, and M. Muller, 'Collinear type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical-aperture objectives,' Opt. Lett. 23, 1046-1048 (1998). [CrossRef]
  12. I. Amat-Roldan, I. G. Cormack, P. Loza-Alvarez, E. J. Gualda, and D. Artigas, 'Ultrashort pulse characterisation with SHG collinear-FROG,' Opt. Express 12, 1169-1178 (2004). [CrossRef] [PubMed]
  13. I. Amat-Roldan, I. G. Cormack, P. Loza-Alvarez, and D. Artigas, 'Starch-based second-harmonic-generated collinear frequency-resolved optical gating pulse characterization at the focal plane of a high-numerical-aperture lens,' Opt. Lett. 29, 2282-2284 (2004). [CrossRef] [PubMed]
  14. A. Monmayrant, M. Joffre, T. Oksenhendler, R. Herzog, D. Kaplan, and P. Tournois, 'Time-domain interferometry for direct electric-field reconstruction by use of an acousto-optic programmable filter and a two-photon detector,' Opt. Lett. 28, 278-280 (2003). [CrossRef] [PubMed]
  15. V. V. Lozovoy, I. Pastirk, and M. Dantus, 'Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,' Opt. Lett. 29, 775-777 (2004). [CrossRef] [PubMed]
  16. B. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, 'Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,' J. Opt. Soc. Am. B 23, 750-759 (2006). [CrossRef]
  17. C. Iaconis and I. A. Walmsley, 'Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,' Opt. Lett. 23, 792-794 (1998). [CrossRef]
  18. C. Iaconis and I. A. Walmsley, 'Self-referencing spectral interferometry for measuring ultrashort optical pulses,' IEEE J. Quantum Electron. 35, 501-509 (1999). [CrossRef]
  19. T. M. Shuman, M. E. Anderson, J. Bromage, C. Iaconis, L. Waxer, and I. A. Walmsley, 'Real-time SPIDER: ultrashort pulse characterization at 20Hz,' Opt. Express 5, 134-143 (1999). [CrossRef] [PubMed]
  20. B. von Vacano, T. Buckup, and M. Motzkus, 'In situ broadband pulse compression for multiphoton microscopy using a shaper-assisted collinear SPIDER,' Opt. Lett. 31, 1154-1156 (2006). [CrossRef]
  21. M. Takeda, H. Ina, and S. Kobayashi, 'Fourier-transform method of fringe-pattern analysis for computer-based tomography and interferometry,' J. Opt. Soc. Am. 72, 156-160 (1982). [CrossRef]
  22. P. Baum, S. Lochbrunner, and E. Riedle, 'Zero-additional-phase SPIDER: full characterization of visible and sub-20-fs ultraviolet pulses,' Opt. Lett. 29, 210-212 (2004). [CrossRef] [PubMed]
  23. M. E. Anderson, L. E. E. de Araujo, E. M. Kosik, and I. A. Walmsley, 'The effects of noise on ultrashort-optical-pulse measurement using SPIDER,' Appl. Phys. B 70, S85-S93 (2000). [CrossRef]
  24. E. M. Kosik, A. S. Radunsky, I. A. Walmsley, and C. Dorrer, 'Interferometric technique for measuring broadband ultrashort pulses at the sampling limit,' Opt. Lett. 30, 326-328 (2005). [CrossRef] [PubMed]
  25. J. R. Birge, R. Ell, and F. X. Kartner, 'Two-dimensional spectral shearing interferometry for few-cycle pulse characterization,' Opt. Lett. 31, 2063-2065 (2006). [CrossRef] [PubMed]
  26. L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, 'Techniques for the characterization of sub-10-fs optical pulses: a comparison,' Appl. Phys. B 70, S67-S75 (2000). [CrossRef]
  27. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K.-L. Kompa, 'Whither the future of controlling quantum phenomena?,' Science 288, 824-828 (2000). [CrossRef] [PubMed]
  28. W. Wohlleben, T. Buckup, J. L. Herek, and M. Motzkus, 'Coherent control for spectroscopy and manipulation of biological dynamics,' ChemPhysChem 6, 850-857 (2005). [CrossRef] [PubMed]
  29. D. N. Fittinghoff, A. C. Millard, J. A. Squier, and M. Muller, 'Frequency-resolved optical gating measurement of ultrashort pulses passing through a high numerical aperture objective,' IEEE J. Quantum Electron. 35, 479-486 (1999). [CrossRef]
  30. A 3:1 beam splitter was chosen to generate the reference beam to maintain a sufficient power level for the creation of the desired supercontinuum spectrum. An optimal choice might be different for other applications; in our case it ensures high-enough pulse energies of the compressed test pulses in situ for microscopy.
  31. C. Dorrer, 'Influence of the calibration of the detector on spectral interferometry,' J. Opt. Soc. Am. B 16, 1160-1168 (1999). [CrossRef]
  32. J. Thornes, P. Poon, and M. E. Anderson, 'Single-iteration compression of femtosecond laser pulses,' J. Opt. Soc. Am. B 21, 1387-1390 (2004). [CrossRef]
  33. J. Wemans, G. Figueira, N. Lopes, and L. Cardoso, 'Self-referencing spectral phase interferometry for direct electric-field reconstruction with chirped pulses,' Opt. Lett. 31, 2217-2219 (2006). [CrossRef] [PubMed]
  34. T. Hornung, R. Meier, and M. Motzkus, 'Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain,' Chem. Phys. Lett. 326, 445-453 (2000). [CrossRef]
  35. J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, 'Multiphoton intrapulse interference 3: probing microscopic chemical environments,' J. Phys. Chem. A 108, 53-58 (2004). [CrossRef]
  36. J. P. Ogilvie, D. Debarre, X. Solinas, J. L. Martin, E. Beaurepaire, and M. Joffre, 'Use of coherent control for selective two-photon fluorescence microscopy in live organisms,' Opt. Express 14, 759-766 (2006). [CrossRef] [PubMed]
  37. N. Dudovich, D. Oron, and Y. Silberberg, 'Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,' Nature 418, 512-514 (2002). [CrossRef] [PubMed]
  38. B. von Vacano, W. Wohlleben, and M. Motzkus, 'Actively shaped supercontinuum from a photonic crystal fiber for nonlinear coherent microspectroscopy,' Opt. Lett. 31, 413-415 (2006). [CrossRef] [PubMed]
  39. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, 'Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,' Opt. Lett. 27, 1174-1176 (2002). [CrossRef]
  40. S. Linden, H. Giessen, and J. Kuhl, 'XFROG--a new method for amplitude and phase characterization of weak ultrashort pulses,' Phys. Status Solidi B 206, 119-124 (1998). [CrossRef]
  41. S. Linden, J. Kuhl, and H. Giessen, 'Amplitude and phase characterization of weak blue ultrashort pulses by downconversion,' Opt. Lett. 24, 569-571 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited