OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 5 — May. 1, 2007
  • pp: 1113–1121

Polarized second-harmonic generation with broadband femtosecond pulses

Brian K. Canfield, Kaisa Laiho, and Martti Kauranen  »View Author Affiliations

JOSA B, Vol. 24, Issue 5, pp. 1113-1121 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (654 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We computationally investigate polarized second-harmonic generation (SHG) of a spectrally broad femtosecond pulse following transmission through traditional quarter wave plates (QWPs). Because the sideband modes of a broadband pulse can interact through sum-frequency generation processes, the SHG responses for several experimentally relevant cases exhibit asymmetries between individual sideband modes, spectral peak shifts, and, critically, artificial chiral signatures. Remarkably, errors in the various sum-frequency sidebands are found to compensate for each other so that the total SHG response approaches the ideal narrowband response. This occurs in the absence of significant axis misalignment in a compound QWP. Hence, our results suggest that polarized femtosecond SHG can be remarkably tolerant against the broad bandwidth of ultrashort pulses.

© 2007 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(260.5430) Physical optics : Polarization
(320.5550) Ultrafast optics : Pulses

ToC Category:
Nonlinear Optics

Original Manuscript: October 12, 2006
Manuscript Accepted: December 11, 2006
Published: April 17, 2007

Brian K. Canfield, Kaisa Laiho, and Martti Kauranen, "Polarized second-harmonic generation with broadband femtosecond pulses," J. Opt. Soc. Am. B 24, 1113-1121 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. See, for instance, the special issue on femtochemistry, J. Phys. Chem. 97, 12460-12465 (1993). Includes the major paper by A. Zewail, who won the 1999 Nobel in chemistry for time-resolved studies of molecular interactions. [CrossRef]
  2. J. J. Macklin, J. D. Kmetec, and C. L. I. Gordon, 'High-order harmonic generation using intense femtosecond pulses,' Phys. Rev. Lett. 70, 766-769 (1993). [CrossRef] [PubMed]
  3. A. M. Malvezzi, M. Allione, M. Patrini, A. Stella, P. Cheyssac, and R. Kofman, 'Melting-induced enhancement of the second-harmonic generation from metal nanoparticles,' Phys. Rev. Lett. 89, 087401 (2002). [CrossRef] [PubMed]
  4. T. Atay, J.-H. Song, and A. V. Nurmikko, 'Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,' Nano Lett. 4, 1627-1631 (2004). [CrossRef]
  5. W. Huang, W. Qian, and M. A. El-Sayed, 'Photothermal reshaping of prismatic Au nanoparticles in periodic monolayer arrays by femtosecond laser pulses,' J. Appl. Phys. 98, 114301 (2005). [CrossRef]
  6. B. Lamprecht, A. Leitner, and F. R. Aussenegg, 'SHG studies of plasmon dephasing in nanoparticles,' Appl. Phys. B 68, 419-423 (1999). [CrossRef]
  7. C. Anceau, S. Brasselet, J. Zyss, and P. Gadenne, 'Local second-harmonic generation enhancement on gold nanostructures probed by two-photon microscopy,' Opt. Lett. 28, 713-715 (2003). [CrossRef] [PubMed]
  8. B. K. Canfield, S. Kujala, M. Kauranen, K. Jefimovs, T. Vallius, and J. Turunen, 'Remarkable polarization sensitivity of gold nanoparticle arrays,' Appl. Phys. Lett. 86, 183109 (2005). [CrossRef]
  9. A. E. Siegman, Lasers (University Science Books, 1986).
  10. I. V. Tomov, R. Fedosejevs, and A. A. Offenberger, 'Up-Conversion of subpicosecond light pulses,' IEEE J. Quantum Electron. 18, 2048-2056 (1982). [CrossRef]
  11. T. R. Zhang, H. R. Choo, and M. C. Downer, 'Phase and group velocity matching for second harmonic generation of femtosecond pulses,' Appl. Opt. 29, 3927-3933 (1990). [CrossRef] [PubMed]
  12. R. A. Cheville, M. T. Reiten, and N. J. Halas, 'Wide-bandwidth frequency doubling with high conversion efficiency,' Opt. Lett. 17, 1343-1345 (1992). [CrossRef] [PubMed]
  13. H. Zhu, T. Wang, W. Zheng, P. Yuan, L. Qian, and D. Fan, 'Efficient second harmonic generation of femtosecond laser at 1μm,' Opt. Express 12, 2150-2155 (2004). [CrossRef] [PubMed]
  14. X. Xiao, C. Yang, S. Gao, and H. Miao, 'Analysis of ultrashort-pulse second-harmonic generation in both phase- and group-velocity-matched structures,' IEEE J. Quantum Electron. 41, 85-93 (2005). [CrossRef]
  15. T. Hofmann, K. Mossavi, F. K. Tittel, and G. Szabó, 'Spectrally compensated sum-frequency mixing scheme for generation of broadband radiation at 193nm,' Opt. Lett. 17, 1691-1693 (1992). [CrossRef]
  16. C. Radzewicz, J. S. Krasinski, and Y. B Band, 'Increased efficiency for sumfrequency generation for broadband input fields,' Opt. Lett. 18, 331-333 (1993). [CrossRef] [PubMed]
  17. K. Osvay and I. N. Ross, 'Broadband sum-frequency generation by chirp-assisted group-velocity matching,' J. Opt. Soc. Am. B 13, 1431-1438 (1996). [CrossRef]
  18. C. J. Sun and J. T. Lue, 'Second harmonic generation with focused broad-band and high-order transverse mode lasers,' IEEE J. Quantum Electron. 24, 113-117 (1988). [CrossRef]
  19. Y. B. Band, D. F. Heller, J. R. Ackerhalt, and J. S. Krasinski, 'Spectrum of second-harmonic generation for multimode fields,' Phys. Rev. A 42, 1515--1521 (1990). [CrossRef] [PubMed]
  20. F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, 'Femtosecond solid-state lasers,' IEEE J. Quantum Electron. 28, 2097-2122 (1992). [CrossRef]
  21. J. O. White, D. Hulin, M. Joffre, A. Migus, A. Antonetti, E. Toussaere, R. Hierle, and J. Zyss, 'Ultrabroadband second-harmonic generation in organic and inorganic thin crystals,' Appl. Phys. Lett. 64, 264-266 (1994). [CrossRef]
  22. E. Sidick, A. Knoesen, and A. Dienes, 'Ultrashort-pulse second-harmonic generation. I. Transform-limited fundamental pulses,' J. Opt. Soc. Am. B 12, 1704-1712 (1995). [CrossRef]
  23. E. Sidick, A. Dienes, and A. Knoesen, 'Ultrashort-pulse second-harmonic generation. II. Non-transform-limited fundamental pulses,' J. Opt. Soc. Am. B 12, 1713-1722 (1995). [CrossRef]
  24. M. Mlejnek, E. M. Wright, J. V. Moloney, and N. Bloembergen, 'Second harmonic generation of femtosecond pulses at the boundary of a nonlinear dielectric,' Phys. Rev. Lett. 83, 2934-2937 (1999). [CrossRef]
  25. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  26. V. Pasiskevicius, S. J. Holmgren, S. Wang, and F. Laurell, 'Simultaneous second-harmonic generation with two orthogonal polarization states in periodically poled KTP,' Opt. Lett. 27, 1628-1630 (2002). [CrossRef]
  27. R. A. Ganeev, A. Ishizawa, T. Kanai, T. Ozaki, and H. Kuroda, 'Polarization peculiarities of femtosecond laser induced harmonic generation from solid surface plasma,' Opt. Commun. 227, 175-182 (2003). [CrossRef]
  28. D. Hovhannisyan, K. Stepanyan, and R. Avagyan, 'Sum and difference frequency generation by femtosecond laser pulses in a nonlinear crystal,' Opt. Commun. 245, 443-456 (2005). [CrossRef]
  29. M. H. Smith, 'Polarization metrology moves beyond 'home-brewed' solutions,' Laser Focus World 40, 123-129 (2004).
  30. Selected manufacturers' wave-plate specifications can be found at Casix (http://www.casix.com), CVI (http://www.cvilaser.com), Ekspla (http://www.ekspla.com), and Elan (http://www.elan.spb.ru).
  31. E. A. West and M. H. Smith, 'Polarization errors associated with birefringent waveplates,' Opt. Eng. 34, 1574-1580 (1995). [CrossRef]
  32. B. Boulbry, B. L. Jeune, F. Pellen, J. Cariou, and J. Lotrian, 'Identification of error parameters and calibration of a double-crystal birefringent wave plate with a broadband spectral light source,' J. Phys. D 35, 2508-2515 (2002). [CrossRef]
  33. P. D. Hale and G. W. Day, 'Stability of birefringent linear retarders (wave plates),' Appl. Opt. 27, 5146-5153 (1988). [CrossRef] [PubMed]
  34. L. D. Acquisto, G. Petrucci, and B. Zuccarello, 'Full field automated evaluation of the quarter wave plate retardation by phase stepping technique,' Opt. Lasers Eng. 37, 389-400 (2002). [CrossRef]
  35. S. Cattaneo and M. Kauranen, 'Application of second-harmonic generation to retardation measurements,' J. Opt. Soc. Am. B 20, 520-528 (2003). [CrossRef]
  36. J. J. Maki, M. Kauranen, and A. Persoons, 'Surface second-harmonic generation from chiral materials,' Phys. Rev. B 51, 1425-1434 (1995). [CrossRef]
  37. M. Kauranen, T. Verbiest, S. V. Elshocht, and A. Persoons, 'Chirality in surface nonlinear optics,' Opt. Mater. 9, 286-294 (1998). [CrossRef]
  38. B. K. Canfield, S. Kujala, K. Laiho, K. Jefimovs, J. Turunen, and M. Kauranen, 'Chirality arising from small defects in gold nanoparticle arrays,' Opt. Express 14, 950-955 (2006). [CrossRef] [PubMed]
  39. M. Born and E. Wolf, Principles of Optics, Seventh ed. (Cambridge U. Press, 1999).
  40. D. Goldstein, Polarized Light, 2nd ed. (Dekker, 2003). [CrossRef]
  41. B. K. Canfield, S. Kujala, K. Jefimovs, Y. Svirko, J. Turunen, and M. Kauranen, 'A macroscopic formalism to describe the second-order nonlinear optical response of nanostructures,' J. Opt. A, Pure Appl. Opt. 8, 278-284 (2006). [CrossRef]
  42. W. H. Glenn, 'Second-harmonic generation by picosecond optical pulses,' IEEE J. Quantum Electron. 5, 284-290 (1969). [CrossRef]
  43. Y. Nabekawa and K. Midorikawa, 'Broadband sum frequency mixing using noncollinear angularly dispersed geometry for indirect phase control of sub-20-femtosecond UV pulses,' Opt. Express 11, 324-338 (2003). [CrossRef] [PubMed]
  44. The dispersion of crystal quartz was obtained from http://www.cvilaser.com/Common/PDFs/Dispersion_Equations.pdf. Note: Because this URL is too long for the printed column, the reader will need to type it into his or her browser directly.
  45. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998). [CrossRef]
  46. N. H. Burnett, C. Kan, and P. B. Corkum, 'Ellipticity and polarization effects in harmonic generation in ionizing neon,' Phys. Rev. A 51, 3418-3121 (1995). [CrossRef]
  47. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, 'Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,' J. Opt. Soc. Am. B 4, 968-976 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited