OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 6 — Jun. 1, 2007
  • pp: 1283–1290

Higher-order mode grating devices in As 2 S 3 chalcogenide glass rib waveguides

Klaus Finsterbusch, Neil J. Baker, Vahid G. Ta’eed, Benjamin J. Eggleton, Duk-Yong Choi, Steve Madden, and Barry Luther-Davies  »View Author Affiliations


JOSA B, Vol. 24, Issue 6, pp. 1283-1290 (2007)
http://dx.doi.org/10.1364/JOSAB.24.001283


View Full Text Article

Enhanced HTML    Acrobat PDF (476 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the design and fabrication of high-quality long-period gratings in chalcogenide glass ( As 2 S 3 ) rib waveguides utilizing the strong photosensitivity. Higher-order modes of the rib waveguides are analyzed by inspection of the spectra of Bragg gratings written into these waveguides. Based on these measurements, we infer the effective indices of higher-order modes, which are in good agreement with modeling results using a beam propagation method. High-quality long-period gratings are then designed and written into the rib waveguides using a simple shadow mask technique. Coupling the fundamental to the HE 02 mode strong resonances of up to 20 dB depths are obtained. The gratings have a length of L = 26 mm and a period of Λ = 86 μ m . In situ monitoring of the writing process allows the growth dynamics of the grating to be studied. A theoretical fit to the measured transmission curve gives an average index change of 10 3 .

© 2007 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.3130) Materials : Integrated optics materials
(350.2770) Other areas of optics : Gratings

ToC Category:
Materials

History
Original Manuscript: November 8, 2006
Revised Manuscript: January 31, 2007
Manuscript Accepted: February 13, 2007
Published: May 17, 2007

Citation
Klaus Finsterbusch, Neil J. Baker, Vahid G. Ta'eed, Benjamin J. Eggleton, Duk-Yong Choi, Steve Madden, and Barry Luther-Davies, "Higher-order mode grating devices in As2S3 chalcogenide glass rib waveguides," J. Opt. Soc. Am. B 24, 1283-1290 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-6-1283


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Othonos and K. Kalli, Fiber Bragg Grating (Artech House, 1999).
  2. G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett. 14, 823-825 (1989). [CrossRef] [PubMed]
  3. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996). [CrossRef]
  4. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, "Electrically tunable efficient broad-band fiber filter," IEEE Photon. Technol. Lett. 11, 445-447 (1999). [CrossRef]
  5. K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, "Efficient mode conversion in telecommunication fibre using externally written gratings," Electron. Lett. 26, 1270-1272 (1990). [CrossRef]
  6. P. F. Wysocki, I. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, "Broad-band erbium-doped fiber amplifier flattened beyond 40nm using long-period grating filter," IEEE Photon. Technol. Lett. 9, 1343-1345 (1997). [CrossRef]
  7. M. Das and K. Thyagarajan, "Dispersion control with use of long-period fiber gratings," Opt. Lett. 190, 159-163 (2001).
  8. M. N. Ng, Z. Chen, and K. S. Chiang, "Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect," IEEE Photon. Technol. Lett. 14, 361-362 (2002). [CrossRef]
  9. J. N. Kutz, B. J. Eggleton, J. B. Stark, and R. E. Slusher, "Nonlinear pulse propagation in long-period fiber gratings: theory and experiment," IEEE J. Sel. Top. Quantum Electron. 3, 1232-1245 (1997). [CrossRef]
  10. B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, "All-optical switching in long-period fiber gratings," Opt. Lett. 22, 883-885 (1997). [CrossRef] [PubMed]
  11. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, "Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers," J. Opt. Soc. Am. B 21, 1146-1155 (2004). [CrossRef]
  12. L. E. Busse, J. A. Moon, J. S. Sanhera, and I. D. Aggrawal, "Chalcogenide fibers deliver high IR power," Laser Focus World 32, 143-145 (1996).
  13. P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, "Small-core As-Se fiber for Raman amplification," Opt. Lett. 28, 1406-1408 (2003). [CrossRef] [PubMed]
  14. V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005). [CrossRef] [PubMed]
  15. M. Asobe, T. Kanamori, and K. Kubodera, "Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber," IEEE Photon. Technol. Lett. 29, 362-365 (1992).
  16. M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, "Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method," Electron. Lett. 32, 1611-1613 (1996). [CrossRef]
  17. M. Shokooh-Saremi, V. G. Ta'eed, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer," J. Opt. Soc. Am. B 23, 1323-1330 (2007).
  18. N. J. Baker, H. W. Lee, I. C. M. Littler, C. M. de Sterke, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, "Sampled Bragg gratings in chalcogenide (As2S3) rib-waveguides," Opt. Express 14, 9451-9459 (2006). [CrossRef] [PubMed]
  19. D. Pudo, E. C. Mägi, and B. J. Eggleton, "Long-period gratings in chalcogenide fibers," Opt. Express 14, 3763-3766 (2006). [CrossRef] [PubMed]
  20. I. C. M. Littler, L. B. Fu, E. C. Mägi, D. Pudo, and B. J. Eggleton, "Widely tunable, acousto-optic resonances in chalcogenide As2Se3 fiber," Opt. Express 14, 8088-8095 (2006). [CrossRef] [PubMed]
  21. V. Rastogi and K. S. Chiang, "Long-period gratings in planar optical waveguides," Appl. Opt. 41, 6351-6355 (2002). [CrossRef] [PubMed]
  22. K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, "Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides," IEEE Photon. Technol. Lett. 15, 1094-1096 (2003). [CrossRef]
  23. A. Perentos, G. Kostovski, and A. Mitchell, "Polymer long-period raised rib waveguide gratings using nano-imprint lithography," IEEE Photon. Technol. Lett. 17, 2595-2597 (2005). [CrossRef]
  24. Q. Liu, K. S. Chiang, and V. Rastogi, "Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence," J. Lightwave Technol. 21, 3399-3405 (2003). [CrossRef]
  25. M. Kulishov, "Interdigitated electrode-induced phase grating with an electrically switchable and tunable period," Appl. Opt. 38, 7356-7363 (1999). [CrossRef]
  26. K. Finsterbusch, N. J. Baker, V. G. Ta'eed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, "Long-period gratings in chalcogenide (As2S3) rib waveguides," Electron. Lett. 42, 1094-1095 (2006). [CrossRef]
  27. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, "Cladding-mode-resonances in air-silica microstructure optical fibers," J. Lightwave Technol. 18, 1084-1100 (2000). [CrossRef]
  28. M. D. Feit and J. A. Fleck, "Computation of mode properties in optical fiber wave guides by a propagating beam method," Appl. Opt. 19, 1154-1164 (1980). [PubMed]
  29. T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997). [CrossRef]
  30. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  31. B. Luther-Davis, V. Z. Kolev, M. J. Lederer, N. R. Madsen, J. Giesekus, K.-M. Du, and M. Duering, "Table-top 50W laser system for ultra-fast laser ablation," Appl. Phys. A 79, 1051-1055 (2004). [CrossRef]
  32. Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, "Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching," Opt. Express 12, 5140-5145 (2004). [CrossRef] [PubMed]
  33. R. A. Soref, J. Schmidtchen, and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991). [CrossRef]
  34. V. M. Kryshenik, and V. I. Mikla, "Anisotropic phenomena in as-evaporated amorphous chalcogenide thin films," Mater. Sci. Eng., B 100, 292-296 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited