OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 6 — Jun. 1, 2007
  • pp: 1298–1302

Detection of resonance space-charge wave peaks for holes and electrons in photorefractive crystals

Ivan de Oliveira and Jaime Frejlich  »View Author Affiliations


JOSA B, Vol. 24, Issue 6, pp. 1298-1302 (2007)
http://dx.doi.org/10.1364/JOSAB.24.001298


View Full Text Article

Enhanced HTML    Acrobat PDF (121 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report nonstationary photorefractive holograms in absorbing Bi 12 Ti O 20 samples with different degrees of hole-electron competition exhibiting resonance peaks due to electron and hole charge carriers. One sample with moderate hole-electron competition and another with a much larger effect were studied. Experimental data from these samples were analyzed using a theoretical model accounting for electrical hole-electron coupling, wave coupling, and response-time variation along the sample thickness due to bulk light absorption. Comparing experimental data and theoretical results allows finding out material parameters adequately describing hole and electron photoactive centers in these samples.

© 2007 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(160.2900) Materials : Optical storage materials
(160.4330) Materials : Nonlinear optical materials
(160.5320) Materials : Photorefractive materials
(190.5330) Nonlinear optics : Photorefractive optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 18, 2006
Revised Manuscript: February 15, 2007
Manuscript Accepted: February 20, 2007
Published: May 17, 2007

Citation
Ivan de Oliveira and Jaime Frejlich, "Detection of resonance space-charge wave peaks for holes and electrons in photorefractive crystals," J. Opt. Soc. Am. B 24, 1298-1302 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-6-1298


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. I. Stepanov, V. V. Kulikov, and M. P. Petrov, "Running holograms in photorefractive Bi2TiO20 crystals," Opt. Commun. 44, 19-23 (1982). [CrossRef]
  2. S. Stepanov and P. Petrov, Photorefractive Materials and Their Applications I, Vol. 61 of Topics in Applied Physics Series, P.Günter and J.-P.Huignard, eds. (Springer-Verlag, 1988), Chap. 9, pp. 263-289.
  3. I. de Oliveira and J. Frejlich, "Photorefractive running hologram for materials characterization," J. Opt. Soc. Am. B 18, 291-297 (2001). [CrossRef]
  4. F. P. Strohkendl, J. M. C. Jonathan, and R. W. Hellwarth, "Hole-electron competition in photorefractive gratings," Opt. Lett. 11, 312-314 (1986). [CrossRef] [PubMed]
  5. G. C. Valley, "Simultaneous electron/hole transport in photorefractive materials," J. Appl. Phys. 59, 3363-3366 (1986). [CrossRef]
  6. F. P. Strohkendl and R. W. Hellwarth, "Contribution of holes to the photorefractive effect in n-type Bi12SiO20," J. Appl. Phys. 62, 2450-2455 (1987). [CrossRef]
  7. G. Pauliat, M. Allain, J. C. Launay, and G. Roosen, "Optical evidence of a photorefractive effect due to holes in Bi12GeO20 crystals," Opt. Commun. 61, 321-324 (1987). [CrossRef]
  8. S. Zhivkova and M. Miteva, "Holographic recording in photorefractive crystals with simultaneous electron-hole transport and two active centers," J. Appl. Phys. 68, 3099-3103 (1990). [CrossRef]
  9. J. Frejlich, "Fringe-locked running hologram and multiple photoactive species in Bi12TiO20," J. Appl. Phys. 68, 3104-3109 (1990). [CrossRef]
  10. J. Frejlich and P. M. Garcia, "Quasipermanent hole-photorefractive and photochromic effects in Bi12TiO20 crystals," Appl. Phys. A: Solids Surf. 55, 49-54 (1992). [CrossRef]
  11. P. Xia, J. Jonathan, J. Partanen, and R. Hellwarth, "Measurement of the complex polarizability of electron traps in Bi12SiO20 by a moving-grating technique," Opt. Lett. 18, 1780-1782 (1993). [CrossRef] [PubMed]
  12. M. Imlau, K. Bastwöste, S. Möller, and U. Voelker, "Dispersion of the electronoptic properties of cerium-doped Sr0.61Ba0.39Nb2O6," J. Appl. Phys. 100, 053110-1-053110-6 (2006). [CrossRef]
  13. P. dos Santos, J. Carvalho, and J. Frejlich, "Direct near infrared photorefractive recording and pre-exposure controlled hole-electron competition with enhanced recording in undoped Bi12TiO20," Appl. Phys. B: Photophys. Laser Chem. 81, 651-655 (2005). [CrossRef]
  14. G. Brost, K. M. Magde, J. J. Larkin, and M. T. Harris, "Modulation dependence of the photorefractive response with moving gratings: numerical analysis and experiment," J. Opt. Soc. Am. B 11, 1764-1772 (1994). [CrossRef]
  15. S. L. Sochava, E. V. Mokrushina, V. V. Prokofiev, and S. I. Stepanov, "Experimental comparison of the ac field and the moving-grating holographic-recording techniques for Bi12SiO20 and Bi12TiO20 crystals," J. Opt. Soc. Am. B 10, 1600-1604 (1993). [CrossRef]
  16. E. Shamonina, K. H. Ringhofer, P. M. Garcia, A. A. Freschi, and J. Frejlich, "Shape-asymmetry of the diffraction efficiency in Bi12TiO20 crystals: the simultaneous influence of absorption and higher harmonics," Opt. Commun. 141, 132-136 (1997). [CrossRef]
  17. B. Imbert, H. Rajbenbach, S. Mallick, J. Herriau, and J. Huignard, "High photorefractive gain in two-beam coupling with moving fringes in GaAs:Cr crystals," Opt. Lett. 13, 327-329 (1988). [CrossRef] [PubMed]
  18. J. Ma, Y. Taketomi, Y. Fainman, J. E. Ford, S. H. Lee, and K. Chino, "Moving grating and dc external field in photorefractive GaP at 633 nm," Opt. Lett. 16, 1080-1082 (1991). [CrossRef] [PubMed]
  19. J. Kumar, G. Albanese, and W. Steier, "Measurement of two-wave mixing gain in GaAs with a moving grating," Opt. Commun. 63, 191-193 (1987). [CrossRef]
  20. I. Aubrecht, H. Ellin, A. Grunnet-Jepsen, and L. Solymar, "Space-charge field in photorefractive materials enhanced by moving fringes: comparison of hole-electron transport models," J. Opt. Soc. Am. B 12, 1918-1923 (1995). [CrossRef]
  21. I. de Oliveira and J. Frejlich, "Detection of resonance space-charge wave peaks for holes and electrons in photorefractive crystals," in Photorefractive Effects, Materials and Devices, G.J.Salamo, A.Siahmakoun, D.D.Nolte, and S.Stepanov, eds., Vol. 62 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), pp. 237-245.
  22. G. Brost, J. Norman, S. Odoulov, K. Shcherbin, A. Shumelyuk, and V. Taranov, "Gain spectra of beam coupling in photorefractive semiconductors," J. Opt. Soc. Am. B 15, 2083-2090 (1998). [CrossRef]
  23. P. D. Foote and T. J. Hall, "Influence of optical activity on two beam coupling constants in photorefractive Bi12SiO20," Opt. Commun. 57, 201-206 (1986). [CrossRef]
  24. J. Frejlich, P. M. Garcia, K. H. Ringhofer, and E. Shamonina, "Phase modulation in two-wave mixing for dynamically recorded gratings in photorefractive materials," J. Opt. Soc. Am. B 14, 1741-1749 (1997). [CrossRef]
  25. I. de Oliveira and J. Frejlich, "Dielectric relaxation time measurement in absorbing photorefractive materials," Opt. Commun. 178, 251-255 (2000). [CrossRef]
  26. D. J. Webb and L. Solymar, "The effects of optical activity and absorption on two-wave mixing in Bi12SiO20," Opt. Commun. 83, 287-294 (1991). [CrossRef]
  27. J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording, and Materials Characterization (Wiley-Interscience, 2006).
  28. S. Mallick and D. Rouède, "Influence of the polarization direction on the two-beam coupling in photorefractive Bi12SiO20: diffusion regime," Appl. Phys. B: Photophys. Laser Chem. 43, 239-245 (1987). [CrossRef]
  29. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. II. Beam-coupling-light amplification," Ferroelectrics 22, 961-964 (1979). [CrossRef]
  30. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. I. Steady state," Ferroelectrics 22, 949-964 (1979). [CrossRef]
  31. A. A. Freschi, P. M. Garcia, and J. Frejlich, "Charge-carriers diffusion length in photorefractive crystals computed from the initial hologram phase shift," Appl. Phys. Lett. 71, 2427-2429 (1997). [CrossRef]
  32. J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording, and Materials Characterization (Wiley-Interscience, 2006), Chap. 9.
  33. M. Barbosa and J. Frejlich, "Photorefractive fringe-locked running hologram analysis in the 3-dimensional space," J. Opt. A, Pure Appl. Opt. 5, S416-S419 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited