OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 7 — Jul. 1, 2007
  • pp: 1451–1457

Efficient numerical method of the fiber Bragg grating synthesis

O. V. Belai, L. L. Frumin, E. V. Podivilov, and D. A. Shapiro  »View Author Affiliations

JOSA B, Vol. 24, Issue 7, pp. 1451-1457 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (132 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A numerical method is developed for solution of the Gel’fand–Levitan–Marchenko inverse scattering integral equations. The method is based on the fast inversion procedure of a Toeplitz–Hermitian matrix and special bordering technique. The method is highly competitive with the known discrete layer peeling method in speed and exceeds it noticeably in accuracy at high reflectance.

© 2007 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(050.2770) Diffraction and gratings : Gratings
(060.2430) Fiber optics and optical communications : Fibers, single-mode

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 14, 2006
Revised Manuscript: March 12, 2007
Manuscript Accepted: March 18, 2007
Published: June 15, 2007

O. V. Belai, L. L. Frumin, E. V. Podivilov, and D. A. Shapiro, "Efficient numerical method of the fiber Bragg grating synthesis," J. Opt. Soc. Am. B 24, 1451-1457 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002). [CrossRef]
  2. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  3. V. E. Zakharov and A. B. Shabat, "Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media," Zh. Eksp. Teor. Fiz. 61, 118-134 (1971).
  4. P. V. Frangos and D. L. Jaggard, "Inverse scattering: solution of coupled Gelfand-Levitan-Marchenko integral equations using successive kernel approximations," IEEE Trans. Antennas Propag. 43, 547-552 (1995). [CrossRef]
  5. E. Peral, J. Capmany, and J. Marti, "Iterative solution to the Gel'fand-Levitan-Marchenko coupled equations and application to synthesis of fiber gratings," IEEE J. Quantum Electron. 32, 2078-2084 (1996). [CrossRef]
  6. L. Poladian, "Iterative and noniterative design algorithms for Bragg gratings," Opt. Fiber Technol. 5, 215-222 (1999). [CrossRef]
  7. G. H. Song and S. Y. Shin, "Design of corrugated waveguide filters by the Gel'fand-Levitan-Marchenko inverse scattering method," J. Opt. Soc. Am. A 2, 1905-1915 (1985). [CrossRef]
  8. F. Ahmad and M. Razzagh, "A numerical solution to the Gel'fand-Levitan-Marchenko equation," Appl. Math. Comput. 89, 31-39 (1998). [CrossRef]
  9. R. Feced, M. Zervas, and A. Muriel, "An efficient inverse scattering algorithm for the design of nonuniform Bragg gratings," IEEE J. Quantum Electron. 35, 1105-1115 (1999). [CrossRef]
  10. L. Poladian, "Simple grating synthesis algorithm," Opt. Lett. 25, 787-789 (2000). [CrossRef]
  11. L. Poladian, "Simple grating synthesis algorithm: errata," Opt. Lett. 251400 (2000). [CrossRef]
  12. J. Skaar, L. Wang, and T. Erdogan, "On the synthesis of fiber Bragg gratings by layer peeling," IEEE J. Quantum Electron. 37, 165-173 (2001). [CrossRef]
  13. J. Skaar and R. Feced, "Reconstruction of gratings from noisy reflection data," J. Opt. Soc. Am. A 19, 2229-2237 (2002). [CrossRef]
  14. G. B. Xiao and K. Yashiro, "An efficient algorithm for solving Zakharov-Shabat inverse scattering problem," IEEE Trans. Antennas Propag. 50, 807-811 (2002). [CrossRef]
  15. C. Papachristos and P. Frangos, "Design of corrugated optical waveguide filters through a direct numerical solution of the coupled Gel'fand-Levitan-Marchenko integral equations," J. Opt. Soc. Am. A 19, 1005-1012 (2002). [CrossRef]
  16. A. Rosenthal and M. Horowitz, "Inverse scattering algorithm for reconstructing strongly reflecting fiber Bragg gratings," IEEE J. Quantum Electron. 39, 1018-1026 (2003). [CrossRef]
  17. O. V. Belai, L. L. Frumin, E. V. Podivilov, O. Y. Schwarz, and D. A. Shapiro, "Finite Bragg grating synthesis by numerical solution of Hermitian Gel'fand-Levitan-Marchenko equations," J. Opt. Soc. Am. B 23, 2040-2045 (2006). [CrossRef]
  18. N. Levinson, "The Winer RMS error criterion in filter design and prediction," J. Math. Phys. 25, 261-278 (1947). [CrossRef]
  19. W. F. Trench, "An algorithm for inversion of finite Toeplitz matrices," J. Soc. Ind. Appl. Math. 12, 512-522 (1964). [CrossRef]
  20. S. Zohar, "The solution of a Toeplitz set of linear equations," J. Assoc. Comput. Mach. 21, 272-276 (1974). [CrossRef]
  21. R. E. Blahut, Fast Algorithms for Digital Signal Processing (Addison-Wesley, 1985).
  22. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in Fortran (Cambridge U. Press, 1992).
  23. E. V. Podivilov, D. A. Shapiro, and D. A. Trubitsyn, "Exactly solvable profiles of quasi-rectangular Bragg filter with dispersion compensation," J. Opt. A, Pure Appl. Opt. 8, 788-795 (2006). [CrossRef]
  24. H. Bateman and A. Erdelyi, Higher Transcendental Functions (McGraw-Hill, 1953), Vol. 1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited